Journal Home > Volume 15 , Issue 6

Untethered motile micro/nanorobots (MNRs) that can operate in hard-to-reach small space and perform noninvasive tasks in cellular level hold bright future in healthcare, nanomanufacturing, biosensing, and environmental remediation. Light, as a flexible encoding method with tunable freedom of intensity, wavelength, polarization, and propagation direction, endows unique spatial-temporal precision and dexterity to the manipulation of MNRs. Meanwhile, light has been extensively investigated as functional signals in bioimaging, phototherapy, as well as photoelectrochemical reactions. The hybridization of light and other actuation method ushers in novel MNRs with broadened design space, improved controllability, and advanced functionality. In this review, the fundamental mechanisms of light-driven MNRs will be revisited. On top of it, light hybrid systems, coupling with magnetic, electric, chemical, or ultrasound field, will be reviewed, with light for propulsion or as functional signal. The rational hybridization of multiple stimulus in MNRs not only promises simple combination of two driving forces, but more importantly, motivates rethinking of light-driven MNRs for unprecedented applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light hybrid micro/nano-robots: From propulsion to functional signals

Show Author's information Yuxin Gao1Ze Xiong2Jizhuang Wang1( )Jinyao Tang2Dan Li1
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
Department of Chemistry, The University of Hong Kong, Hong Kong, China

Abstract

Untethered motile micro/nanorobots (MNRs) that can operate in hard-to-reach small space and perform noninvasive tasks in cellular level hold bright future in healthcare, nanomanufacturing, biosensing, and environmental remediation. Light, as a flexible encoding method with tunable freedom of intensity, wavelength, polarization, and propagation direction, endows unique spatial-temporal precision and dexterity to the manipulation of MNRs. Meanwhile, light has been extensively investigated as functional signals in bioimaging, phototherapy, as well as photoelectrochemical reactions. The hybridization of light and other actuation method ushers in novel MNRs with broadened design space, improved controllability, and advanced functionality. In this review, the fundamental mechanisms of light-driven MNRs will be revisited. On top of it, light hybrid systems, coupling with magnetic, electric, chemical, or ultrasound field, will be reviewed, with light for propulsion or as functional signal. The rational hybridization of multiple stimulus in MNRs not only promises simple combination of two driving forces, but more importantly, motivates rethinking of light-driven MNRs for unprecedented applications.

Keywords: light-driven, micro/nanorobots, micro/nanomotors, multiple stimulus, functional signals

References(244)

1
Wang, J. Nanomachines: Fundamentals and Applications; Wiley-VCH: Germany, 2013.https://doi.org/10.1002/9783527651450
DOI
2

Venugopalan, P. L.; de Ávila, B. E. F.; Pal, M.; Ghosh, A.; Wang, J. Fantastic voyage of nanomotors into the cell. ACS Nano 2020, 14, 9423–9439.

3

Feynman, R. P. There’ s plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36.

4

Mavroidis, C.; Dubey, A.; Yarmush, M. L. Molecular machines. Annu. Rev. Biomed. Eng. 2004, 6, 363–395.

5

Goel, A.; Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 2008, 3, 465–475.

6

Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.

7

Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 2015, 115, 10081–10206.

8

Ma, X.; Hortelão, A. C.; Patiño, T.; Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano 2016, 10, 9111–9122.

9

Wang, W.; Chiang, T. Y.; Velegol, D.; Mallouk, T. E. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 2013, 135, 10557–10565.

10

Novotny, F.; Wang, H.; Pumera, M. Nanorobots: Machines squeezed between molecular motors and micromotors. Chem 2020, 6, 867–884.

11

Ji, F. T.; Jin, D. D.; Wang, B.; Zhang, L. Light-driven hovering of a magnetic microswarm in fluid. ACS Nano 2020, 14, 6990–6998.

12

Wu, C. J.; Dai, J.; Li, X. F.; Gao, L.; Wang, J. Z.; Liu, J.; Zheng, J.; Zhan, X. J.; Chen, J. W.; Cheng, X. et al. Ion-exchange enabled synthetic swarm. Nat. Nanotechnol. 2021, 16, 288–295.

13

Mou, F. Z.; Li, X. F.; Xie, Q.; Zhang, J. H.; Xiong, K.; Xu, L. L.; Guan, J. G. Active micromotor systems built from passive particles with biomimetic predator-prey interactions. ACS Nano 2020, 14, 406–414.

14

Wang, H.; Pumera, M. Coordinated behaviors of artificial micro/nanomachines: From mutual interactions to interactions with the environment. Chem. Soc. Rev. 2020, 49, 3211–3230.

15

Wang, J.; Gao, W. Nano/microscale motors: Biomedical opportunities and challenges. ACS Nano 2012, 6, 5745–5751.

16

Guix, M.; Mayorga-Martinez, C. C.; Merkoci, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 2014, 114, 6285–6322.

17

Sengupta, S.; Ibele, M. E.; Sen, A. Fantastic voyage: Designing self-powered nanorobots. Angew. Chem., Int. Ed. 2012, 51, 8434–8445.

18

Aziz, A.; Pane, S.; Iacovacci, V.; Koukourakis, N.; Czarske, J.; Menciassi, A.; Medina-Sánchez, M.; Schmidt, O. G. Medical imaging of microrobots: Toward in vivo applications. ACS Nano 2020, 14, 10865–10893.

19

Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 132, 14474–14478.

20

Lv, J. Y.; Xing, Y.; Xu, T. L.; Zhang, X. J.; Du, X. Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. Appl. Mater. Today 2021, 23, 101034.

21

Wang, J. Z.; Xiong, Z.; Zheng, J.; Zhan, X. J.; Tang, J. Y. Light-driven micro/nanomotor for promising biomedical tools: Principle, challenge, and prospect. Acc. Chem. Res. 2018, 51, 1957–1965.

22

Li, J. X.; Gao, W.; Dong, R. F.; Pei, A.; Sattayasamitsathit, S.; Wang, J. Nanomotor lithography. Nat. Commun. 2014, 5, 5026.

23

Manesh, K. M.; Balasubramanian, S.; Wang, J. Nanomotor-based "writing" of surface microstructures. Chem. Commun. 2010, 46, 5704–5706.

24

Li, J. X.; de Ávila, B. E. F.; Gao, W.; Zhang, L. F.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, eaam6431.

25

Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 2010, 1, 36.

26

Yuan, K. S.; Bujalance-Fernández, J.; Jurado-Sánchez, B.; Escarpa, A. Light-driven nanomotors and micromotors: Envisioning new analytical possibilities for bio-sensing. Microchim. Acta 2020, 187, 581.

27

Jurado-Sánchez, B.; Escarpa, A. Milli, micro and nanomotors: Novel analytical tools for real-world applications. TrAC Trends Anal. Chem. 2016, 84, 48–59.

28

Moo, J. G. S.; Pumera, M. Chemical energy powered nano/micro/macromotors and the environment. Chem.—Eur. J. 2015, 21, 58–72.

29

Jurado-Sánchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V. V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated carbon janus micromotors for efficient water purification. Small 2015, 11, 499–506.

30

Dong, R. F.; Cai, Y. P.; Yang, Y. R.; Gao, W.; Ren, B. Y. Photocatalytic micro/nanomotors: From construction to applications. Acc. Chem. Res. 2018, 51, 1940–1947.

31

Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.

32

Yu, S. M.; Cai, Y.; Wu, Z. G.; He, Q. Recent progress on motion control of swimming micro/nanorobots. VIEW 2021, 2, 20200113.

33

Sitti, M.; Wiersma, D. S. Pros and cons: Magnetic versus optical microrobots. Adv. Mater. 2020, 32, 1906766.

34

Wang, J. Z.; Xiong, Z.; Tang, J. Y. The encoding of light-driven micro/nanorobots: From single to swarming systems. Adv. Intell. Syst. 2021, 3, 2000170.

35

Šipová-Jungová, H.; Andrén, D.; Jones, S.; Käll, M. Nanoscale inorganic motors driven by light: Principles, realizations, and opportunities. Chem. Rev. 2020, 120, 269–287.

36

Ren, L. Q.; Wang, W.; Mallouk, T. E. Two forces are better than one: Combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc. Chem. Res. 2018, 51, 1948–1956.

37

Huang, Y.; Liang, Z. X.; Alsoraya, M.; Guo, J. H.; Fan, D. L. Light-gated manipulation of micro/nanoparticles in electric fields. Adv. Intell. Syst. 2020, 2, 1900127.

38

Yu, H.; Tang, W. T.; Mu, G. Y.; Wang, H. C.; Chang, X. C.; Dong, H. J.; Qi, L. Q.; Zhang, G. Y.; Li, T. L. Micro-/nanorobots propelled by oscillating magnetic fields. Micromachines 2018, 9, 540.

39

Xu, T. L.; Xu, L. P.; Zhang, X. J. Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 2017, 9, 493–503.

40

Chen, C. R.; Soto, F.; Karshalev, E.; Li, J. X.; Wang, J. Hybrid nanovehicles: One machine, two engines. Adv. Funct. Mater. 2019, 29, 1806290.

41

Xu, L. L.; Mou, F. Z.; Gong, H. T.; Luo, M.; Guan, J. G. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926.

42

Chen, H. X.; Zhao, Q. L.; Du, X. M. Light-powered micro/nanomotors. Micromachines 2018, 9, 41.

43

Yoon, S.; Kim, M.; Jang, M.; Choi, Y.; Choi, W.; Kang, S.; Choi, W. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020, 2, 141–158.

44

Luker, G. D.; Luker, K. E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1–4.

45

Zhi, D. F.; Yang, T.; O’Hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control Release 2020, 325, 52–71.

46

Hu, J. J.; Cheng, Y. J.; Zhang, X. Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 2018, 10, 22657–22672.

47

Wang, J. Z.; Xiong, Z.; Zhan, X. J.; Dai, B. H.; Zheng, J.; Liu, J.; Tang, J. Y. A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 2017, 29, 1701451.

48

Dai, B. H.; Wang, J. Z.; Xiong, Z.; Zhan, X. J.; Dai, W.; Li, C. C.; Feng, S. P.; Tang, J. Y. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 2016, 11, 1087–1092.

49

Zhou, C.; Zhang, H. P.; Tang, J. Y.; Wang, W. Photochemically powered AgCl janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir 2018, 34, 3289–3295.

50

Huang, L. Y.; Moran, J. L.; Wang, W. Designing chemical micromotors that communicate—A survey of experiments. JCIS Open 2021, 2, 100006.

51

Prieve, D. C.; Anderson, J. L.; Ebel, J. P.; Lowell, M. E. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 1984, 148, 247–269.

52

Dey, K. K.; Sen, A. Chemically propelled molecules and machines. J. Am. Chem. Soc. 2017, 139, 7666–7676.

53

Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 2006, 128, 14881–14888.

54

Wang, W.; Duan, W. T.; Ahmed, S.; Mallouk, T. E.; Sen, A. Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 2013, 8, 531–554.

55

Wu, Y. J.; Si, T. Y.; Shao, J. X.; Wu, Z. G.; He, Q. Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation. Nano Res. 2016, 9, 3747–3756.

56

Palagi, S.; Mark, A. G.; Reigh, S. Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 2016, 15, 647–653.

57

Mou, F. Z.; Li, Y.; Chen, C. R.; Li, W.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 2015, 11, 2564–2570.

58

Golestanian, R.; Liverpool, T. B.; Ajdari, A. Designing phoretic micro- and nano-swimmers. New J. Phys. 2007, 9, 126.

59

Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308–3312.

60

Duan, W. T.; Liu, R.; Sen, A. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 2013, 135, 1280–1283.

61

Kline, T. R.; Sen, A. Reversible pattern formation through photolysis. Langmuir 2006, 22, 7124–7127.

62

Anderson, J. L.; Lowell, M. E.; Prieve, D. C. Motion of a particle generated by chemical gradients Part 1. Non-electrolytes. J. Fluid Mech. 1982, 117, 107–121.

63

Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99.

64

Palacci, J.; Sacanna, S.; Vatchinsky, A.; Chaikin, P. M.; Pine, D. J. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 2013, 135, 15978–15981.

65

Lin, Z. H.; Si, T. Y.; Wu, Z. G.; Gao, C. Y.; Lin, X. K.; He, Q. Light-activated active colloid ribbons. Angew. Chem., Int. Ed. 2017, 56, 13517–13520.

66

Chen, C. R.; Mou, F. Z.; Xu, L. L.; Wang, S. F.; Guan, J. G.; Feng, Z. P.; Wang, Q. W.; Kong, L.; Li, W.; Wang, J. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 2017, 29, 1603374.

67

Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.

68

Jiang, H. R.; Yoshinaga, N.; Sano, M. Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010, 105, 268302.

69

Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.

70

Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite janus nanomotors with ph-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.

71

Liu, W.; Wang, W. J.; Dong, X. Y.; Sun, Y. Near-infrared light-powered janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis. ACS Appl. Mater. Interfaces 2020, 12, 12618–12628.

72

Villa, K.; Pumera, M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature. Chem. Soc. Rev. 2019, 48, 4966–4978.

73

Liu, J. Z.; Dapice, M.; Khan, S. Ion selectivity of the Vibrio alginolyticus flagellar motor. J. Bacteriol. 1990, 172, 5236–5244.

74

Manson, M. D.; Tedesco, P.; Berg, H. C.; Harold, F. M. Van der Drift, C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA 1977, 74, 3060–3064.

75

Jiang, H. R.; Li, C. S.; Huang, X. Z. Actuators based on liquid crystalline elastomer materials. Nanoscale 2013, 5, 5225–5240.

76

Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D. S. Light-fueled microscopic walkers. Adv. Mater. 2015, 27, 3883–3887.

77

Tang, X. K.; Tang, S. Y.; Sivan, V.; Zhang, W.; Mitchell, A.; Kalantar-zadeh, K.; Khoshmanesh, K. Photochemically induced motion of liquid metal marbles. Appl. Phys. Lett. 2013, 103, 174104.

78

Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered “ on/off” motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.

79

Zhan, X. J.; Zheng, J.; Zhao, Y.; Zhu, B. R.; Cheng, R.; Wang, J. Z.; Liu, J.; Tang, J.; Tang, J. Y. From strong dichroic nanomotor to polarotactic microswimmer. Adv. Mater. 2019, 31, 1903329.

80

Zheng, J.; Dai, B. H.; Wang, J. Z.; Xiong, Z.; Yang, Y.; Liu, J.; Zhan, X. J.; Wan, Z. H.; Tang, J. Y. Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nat. Commun. 2017, 8, 1438.

81

Sridhar, V.; Park, B. W.; Guo, S. R.; van Aken, P. A.; Sitti, M. Multiwavelength-steerable visible-light-driven magnetic CoO–TiO2 microswimmers. ACS Appl. Mater. Interfaces 2020, 12, 24149–24155.

82

Jang, B.; Hong, A.; Kang, H. E.; Alcantara, C.; Charreyron, S.; Mushtaq, F.; Pellicer, E.; Büchel, R.; Sort, J.; Lee, S. S. et al. Multiwavelength light-responsive Au/B-TiO2 janus micromotors. ACS Nano 2017, 11, 6146–6154.

83

Lin, F.; Shao, Y.; Wu, Y. J.; Zhang, Y. Q. NIR light-propelled janus-based nanoplatform for cytosolic-fueled microRNA imaging. ACS Appl. Mater. Interfaces 2021, 13, 3713–3721.

84

Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

85

Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 7, 2002203.

86
Wu, Z. G.; Li, L.; Yang, Y. R.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019, 4, eaax0613.https://doi.org/10.1126/scirobotics.aax0613
DOI
87

Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021.

88

Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246–251.

89

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

90

Wang, D. L.; Gao, C. Y.; Zhou, C.; Lin, Z. H.; He, Q. Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy. Research 2020, 2020, 3676954.

91

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

92

Jiao, X. Y.; Wang, Z. M.; Xiu, J. D.; Dai, W. H.; Zhao, L.; Xu, T. L.; Du, X.; Wen, Y. Q.; Zhang, X. J. NIR powered Janus nanocarrier for deep tumor penetration. Appl. Mater. Today 2020, 18, 100504.

93

Gao, C. Y.; Lin, Z. H.; Wang, D. L.; Wu, Z. G.; Xie, H.; He, Q. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 23392–23400.

94

Chen, B.; Liu, L.; Liu, K.; Tong, F.; Wang, S. H.; Fu, D. M.; Gao, J. B.; Jiang, J. M.; Ou, J. F.; Ye, Y. C. et al. Photoelectrochemical TiO2-Au-nanowire-based motor for precise modulation of single-neuron activities. Adv. Funct. Mater. 2021, 31, 2008667.

95

Jiang, Y. W.; Li, X. J.; Liu, B.; Yi, J.; Fang, Y.; Shi, F. Y.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2018, 2, 508–521.

96

Jiang, Y. W.; Parameswaran, R.; Li, X. J.; Carvalho-de-Souza, J. L.; Gao, X.; Meng, L. Y.; Bezanilla, F.; Shepherd, G. M. G.; Tian, B. Z. Nongenetic optical neuromodulation with silicon-based materials. Nat. Protoc. 2019, 14, 1339–1376.

97

Parameswaran, R.; Carvalho-de-Souza, J. L.; Jiang, Y. W.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 2018, 13, 260–266.

98

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

99

Andrén, D.; Baranov, D. G.; Jones, S.; Volpe, G.; Verre, R.; Käll, M. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat. Nanotechnol. 2021, 16, 970–974.

100

Dong, R. F.; Zhang, Q. L.; Gao, W.; Pei, A.; Ren, B. Y. Highly efficient light-driven TiO2-Au janus micromotors. ACS Nano 2016, 10, 839–844.

101

Deng, Z. Y.; Mou, F. Z.; Tang, S. W.; Xu, L. L.; Luo, M.; Guan, J. G. Swarming and collective migration of micromotors under near infrared light. Appl. Mater. Today 2018, 13, 45–53.

102

Drescher, K.; Goldstein, R. E.; Tuval, I. Fidelity of adaptive phototaxis. Proc. Natl. Acad. Sci. USA 2010, 107, 11171–11176.

103

Jékely, G.; Colombelli, J.; Hausen, H.; Guy, K.; Stelzer, E.; Nédélec, F.; Arendt, D. Mechanism of phototaxis in marine zooplankton. Nature 2008, 456, 395–399.

104

O’Neel-Judy, É.; Nicholls, D.; Castañeda, J.; Gibbs, J. G. Light-activated, multi-semiconductor hybrid microswimmers. Small 2018, 14, 1801860.

105

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

106

Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C:Photochem. Rev. 2003, 4, 145–153.

107

de Ávila, B. E. F.; Martin, A.; Soto, F.; Lopez-Ramirez, M. A.; Campuzano, S.; Vasquez-Machado, G. M.; Gao, W. W.; Zhang, L. F.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 2015, 9, 6756–6764.

108

Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.

109

Deng, G. J.; Peng, X. H.; Sun, Z. H.; Zheng, W.; Yu, J.; Du, L. L.; Chen, H. J.; Gong, P.; Zhang, P. F.; Cai, L. T. et al. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 2020, 14, 11452–11462.

110

Yuan, Y.; Gao, C. Y.; Wang, D. L.; Zhou, C.; Zhu, B. H.; He, Q. Janus-micromotor-based on-off luminescence sensor for active TNT detection. Beilstein J. Nanotechnol. 2019, 10, 1324–1331.

111

Aziz, A.; Medina-Sánchez, M.; Koukourakis, N.; Wang, J. W.; Kuschmierz, R.; Radner, H.; Czarske, J. W.; Schmidt, O. G. Real-time IR tracking of single reflective micromotors through scattering tissues. Adv. Funct. Mater. 2019, 29, 1905272.

112

Xie, L. S.; Pang, X.; Yan, X. H.; Dai, Q. X.; Lin, H. R.; Ye, J.; Cheng, Y.; Zhao, Q. L.; Ma, X.; Zhang, X. Z. et al. Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 2020, 14, 2880–2893.

113

Aziz, A.; Medina-Sánchez, M.; Claussen, J.; Schmidt, O. G. Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues. Nano Lett. 2019, 19, 6612–6620.

114

Wei, T. Y.; Liu, J.; Li, D. F.; Chen, S. X.; Zhang, Y. C.; Li, J. Y.; Fan, L.; Guan, Z. Y.; Lo, C. M.; Wang, L. D. et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 2020, 16, 1906908.

115

Xu, P.; Yu, Y. Q.; Li, T.; Chen, H.; Wang, Q.; Wang, M.; Wan, M. M.; Mao, C. Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Anal. Chim. Acta 2020, 1129, 60–68.

116

Wan, M. M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y. Q.; Zhu, T. Y.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 966.

117

Rao, J. H.; Dragulescu-Andrasi, A.; Yao, H. Q. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007, 18, 17–25.

118

Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

119
Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.https://doi.org/10.1126/science.1083780
DOI
120

Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

121

Nie, L. M.; Chen, X. Y. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 2014, 43, 7132–7170.

122

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

123

Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

124

Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293.

125

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA:Cancer J. Clin. 2011, 61, 250–281.

126

Felsher, D. W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer 2003, 3, 375–380.

127

Robertson, C. A.; Evans, D. H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B:Biol. 2009, 96, 1–8.

128

Yang, L. D.; Zhang, Y. B.; Wang, Q. Q.; Chan, K. F.; Zhang, L. Automated control of magnetic spore-based microrobot using fluorescence imaging for targeted delivery with cellular resolution. IEEE Trans. Autom. Sci. Eng. 2020, 17, 490–501.

129

Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.

130

Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

131

Klostranec, J. M.; Chan, W. C. W. Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 2006, 18, 1953–1964.

132
DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233234, 351–371.https://doi.org/10.1016/S0010-8545(02)00034-6
DOI
133

You, Y. Q.; Xu, D. D.; Pan, X.; Ma, X. Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Appl. Mater. Today 2019, 16, 508–517.

134

van Straten, D.; Mashayekhi, V.; de Bruijn, H. S.; Oliveira, S.; Robinson, D. J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017, 9, 19.

135

Ban, Q. F.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci. 2017, 5, 190–210.

136

Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

137

Wang, H.; Zhou, S. Q. Magnetic and fluorescent carbon-based nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater. Sci. 2016, 4, 1062–1073.

138

Liu, Q.; Sun, C. Y.; He, Q.; Liu, D. B.; Khalil, A.; Xiang, T.; Wu, Z. Y.; Wang, J.; Song, L. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. 2015, 51, 10054–10057.

139

Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88, 1391–1417.

140

Qin, Z. J.; Zheng, Y. K.; Du, T. Y.; Wang, Y. H.; Gao, H. M.; Quan, J. F.; Zhang, Y.; Du, Y.; Yin, L. H.; Wang, X. M. et al. Cysteamine: A key to trigger aggregation-induced NIR-II photothermal effect and silver release booming of gold-silver nanocages for synergetic treatment of multidrug-resistant bacteria infection. Chem. Eng. J. 2021, 414, 128779.

141

Gao, Y.; Wang, S. Q.; Yang, C. Y.; An, N.; Liu, Z.; Yan, M.; Guo, C. S. A near-infrared responsive germanium complex of Ge/GeO2 for targeted tumor phototherapy. J. Mater. Chem. B 2019, 7, 5056–5064.

142

Choi, H.; Lee, G. H.; Kim, K. S.; Hahn, S. K. Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 2338–2346.

143

Yang, P. P.; Zhai, Y. G.; Qi, G. B.; Lin, Y. X.; Luo, Q.; Yang, Y.; Xu, A. P.; Yang, C.; Li, Y. S.; Wang, L. et al. NIR light propulsive janus-like nanohybrids for enhanced photothermal tumor therapy. Small 2016, 12, 5423–5430.

144

Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: Similarities and differences. Adv. Mater. 2020, 32, 1904717.

145

Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

146

Beladi-Mousavi, S. M.; Klein, J.; Khezri, B.; Walder, L.; Pumera, M. Active anion delivery by self-propelled microswimmers. ACS Nano 2020, 14, 3434–3441.

147

Urso, M.; Ussia, M.; Pumera, M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021, 31, 2101510.

148

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

149

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

150

Boyjoo, Y.; Sun, H. Q.; Liu, J.; Pareek, V. K.; Wang, S. B. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559.

151

Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B:Environ. 2012, 125, 331–349.

152

de Ávila, B. E. F.; Angsantikul, P.; Ramírez-Herrera, D. E.; Soto, F.; Teymourian, H.; Dehaini, D.; Chen, Y. J.; Zhang, L. F.; Wang, J. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 2018, 3, eaat0485.

153

Ying, Y. L.; Pumera, M. Micro/Nanomotors for Water Purification. Chem.—Eur. J. 2019, 25, 106–121.

154

Kong, L.; Guan, J. G.; Pumera, M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 2018, 10, 174–182.

155

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

156

Wang, S.; Jiang, Z. Z.; Ouyang, S. S.; Dai, Z. P.; Wang, T. Internally/externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning. ACS Appl. Mater. Interfaces 2017, 9, 23974–23982.

157

Hou, T.; Yu, S. S.; Zhou, M. F.; Wu, M.; Liu, J.; Zheng, X. L.; Li, J. X.; Wang, J.; Wang, X. L. Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale 2020, 12, 5227–5232.

158

Song, L. B.; Li, C. Q.; Chen, W.; Liu, B.; Zhao, Y. D. Highly efficient MnO2/reduced graphene oxide hydrogel motors for organic pollutants removal. J. Mater. Sci. 2020, 55, 1984–1995.

159

Zhang, J. H.; Mou, F. Z.; Wu, Z.; Tang, S. W.; Xie, H. R.; You, M.; Liang, X.; Xu, L. L.; Guan, J. G. Simple-structured micromotors based on inherent asymmetry in crystalline phases: Design, large-scale preparation, and environmental application. ACS Appl. Mater. Interfaces 2019, 11, 16639–16646.

160

Cui, X. L.; Li, J.; Ng, D. H. L.; Liu, J.; Liu, Y.; Yang, W. N. 3D hierarchical ACFs-based micromotors as efficient photo-Fenton-like catalysts. Carbon 2020, 158, 738–748.

161

Zhan, Z. H.; Wei, F. N.; Zheng, J. H.; Yin, C.; Yang, W. G.; Yao, L. G.; Tang, S. S.; Liu, D. Visible light driven recyclable micromotors for “on-the-fly” water remediation. Mater. Lett. 2020, 258, 126825.

162

Mallick, A.; Roy, S. Visible light driven catalytic gold decorated soft-oxometalate (SOM) based nanomotors for organic pollutant remediation. Nanoscale 2018, 10, 12713–12722.

163

Kutorglo, E. M.; Elashnikov, R.; Rimpelova, S.; Ulbrich, P.; Ambrožová, J. Ř.; Svorcik, V.; Lyutakov, O. Polypyrrole-based nanorobots powered by light and glucose for pollutant degradation in water. ACS Appl. Mater. Interfaces 2021, 13, 16173–16181.

164

Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.

165

Kong, L.; Mayorga-Martinez, C. C.; Guan, J. G.; Pumera, M. Fuel-free light-powered TiO2/Pt janus micromotors for enhanced nitroaromatic explosives degradation. ACS Appl. Mater. Interfaces 2018, 10, 22427–22434.

166

Pourrahimi, A. M.; Villa, K.; Ying, Y. L.; Sofer, Z.; Pumera, M. ZnO/ZnO2/Pt janus micromotors propulsion mode changes with size and interface structure: Enhanced nitroaromatic explosives degradation under visible light. ACS Appl. Mater. Interfaces 2018, 10, 42688–42697.

167

Ying, Y. L.; Pourrahimi, A. M.; Manzanares-Palenzuela, C. L.; Novotny, F.; Sofer, Z.; Pumera, M. Light-driven ZnO brush-shaped self-propelled micromachines for nitroaromatic explosives decomposition. Small 2020, 16, 1902944.

168

Kong, L.; Ambrosi, A.; Nasir, M. Z. M.; Guan, J. G.; Pumera, M. Self-propelled 3D-printed “aircraft carrier” of light-powered smart micromachines for large-volume nitroaromatic explosives removal. Adv. Funct. Mater. 2019, 29, 1903872.

169

Ussia, M.; Urso, M.; Dolezelikova, K.; Michalkova, H.; Adam, V.; Pumera, M. Active light‐powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021, 31, 2101178.

170

Simmchen, J.; Baeza, A.; Miguel-Lopez, A.; Stanton, M. M.; Vallet-Regi, M.; Ruiz-Molina, D.; Sánchez, S. Dynamics of novel photoactive AgCl microstars and their environmental applications. ChemNanoMat 2017, 3, 65–71.

171

Xu, D. D.; Hu, J.; Pan, X.; Sánchez, S.; Yan, X. H.; Ma, X. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 2021, 15, 11543–11554.

172
Urso, M.; Ussia, M.; Pumera, M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021, 31, 2101510.https://doi.org/10.1002/adfm.202101510
DOI
173

Beladi-Mousavi, S. M.; Hermanova, S.; Ying, Y. L.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110.

174

Wang, L. L.; Kaeppler, A.; Fischer, D.; Simmchen, J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces 2019, 11, 32937–32944.

175

Ye, H.; Wang, Y.; Liu, X. J.; Xu, D. D.; Yuan, H.; Sun, H. Q.; Wang, S. B.; Ma, X. Magnetically steerable iron oxides-manganese dioxide core–shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 2021, 588, 510–521.

176

Butterworth, K. T.; McMahon, S. J.; Currell, F. J.; Prise, K. M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012, 4, 4830–4838.

177

Wang, Y. X.; Feng, L. H.; Wang, S. Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv. Funct. Mater. 2019, 29, 1806818.

178

McAlindon, T. E.; Bannuru, R. R.; Sullivan, M. C.; Arden, N. K.; Berenbaum, F.; Bierma-Zeinstra, S. M.; Hawker, G. A.; Henrotin, Y.; Hunter, D. J.; Kawaguchi, H. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388.

179

Rossini, P. M.; Burke, D.; Chen, R.; Cohen, L. G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P. B.; George, M. S. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I. F. C. N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107.

180

Packer, A. M.; Roska, B.; Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 2013, 16, 805–815.

181
Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.https://doi.org/10.1021/acs.chemrev.0c01234
DOI
182

Chen, X. Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu, C. Z.; Nelson, B. J.; Pané, S. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 2017, 9, 37–46.

183

Peyer, K. E.; Zhang, L.; Nelson, B. J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259–1272.

184

Karshalev, E.; de Ávila, B. E. F.; Wang, J. Micromotors for “chemistry-on-the-fly”. J. Am. Chem. Soc. 2018, 140, 3810–3820.

185

Kadiri, V. M.; Günther, J. P.; Kottapalli, S. N.; Goyal, R.; Peter, F.; Alarcón-Correa, M.; Son, K.; Barad, H. N.; Börsch, M.; Fischer, P. Light- and magnetically actuated FePt microswimmers. Eur. Phys. J. E 2021, 44, 74.

186

Zhou, D. K.; Ren, L. Q.; Li, Y. C.; Xu, P. T.; Gao, Y.; Zhang, G. Y.; Wang, W.; Mallouk, T. E.; Li, L. Q. Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem. Commun. 2017, 53, 11465–11468.

187
Beladi-Mousavi, S. M.; Hermanová, S.; Ying, Y. L.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110.https://doi.org/10.1021/acsami.1c04559
DOI
188

Xu, L. L.; Ma, C.; Guan, B.; Lin, J. W.; Xiong, K.; Mou, F. Z.; Luo, M.; Guan, J. G. NIR light-steered magnetic liquid marbles with switchable positive/negative phototaxis. Appl. Mater. Today 2020, 19, 100595.

189

Yuan, K. S.; de la Asunción-Nadal, V.; Jurado-Sánchez, B.; Escarpa, A. 2D nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chem. Mater. 2020, 32, 1983–1992.

190

Wang, C.; Dong, R. F.; Wang, Q. L.; Zhang, C.; She, X. L.; Wang, J. J.; Cai, Y. P. One modification, two functions: Single ni-modified light-driven ZnO microrockets with both efficient propulsion and steerable motion. Chem.—Asian J. 2019, 14, 2485–2490.

191

Wang, Q. L.; Wang, C.; Dong, R. F.; Pang, Q. Q.; Cai, Y. P. Steerable light-driven TiO2-Fe Janus micromotor. Inorg. Chem. Commun. 2018, 91, 1–4.

192

Mou, F. Z.; Kong, L.; Chen, C. R.; Chen, Z. H.; Xu, L. L.; Guan, J. G. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale 2016, 8, 4976–4983.

193

Li, Y.; Mou, F. Z.; Chen, C. R.; You, M.; Yin, Y. X.; Xu, L. L.; Guan, J. G. Light-controlled bubble propulsion of amorphous TiO2/Au Janus micromotors. RSC Adv. 2016, 6, 10697–10703.

194

Zhou, D. K.; Li, Y. C.; Xu, P. T.; Ren, L. Q.; Zhang, G. Y.; Mallouk, T. E.; Li, L. Q. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 2017, 9, 11434–11438.

195

Dong, R. F.; Hu, Y.; Wu, Y. F.; Gao, W. Y.; Ren, B. Y.; Wang, Q. L.; Cai, Y. P. Visible-light-driven BiOI-based janus micromotor in pure water. J. Am. Chem. Soc. 2017, 139, 1722–1725.

196

Sridhar, V.; Podjaski, F.; Kröger, J.; Jiménez-Solano, A.; Park, B. W.; Lotsch, B. V.; Sitti, M. Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proc. Natl. Acad. Sci. USA 2020, 117, 24748–24756.

197

Zheng, J.; Wang, J. Z.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. Y.; Chen, J. W.; Dai, J.; Tang, J. Y. Full spectrum tunable visible-light-driven alloy nanomotor. Adv. Funct. Mater. 2019, 29, 1901768.

198

Du, S. N.; Wang, H. G.; Zhou, C.; Wang, W.; Zhang, Z. X. Motor and rotor in one: Light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 2020, 142, 2213–2217.

199

Sridhar, V.; Park, B. W.; Sitti, M. Light-driven janus hollow mesoporous TiO2-au microswimmers. Adv. Funct. Mater. 2018, 28, 1704902.

200

Xiao, Z. Y.; Chen, J. Y.; Duan, S. F.; Lv, X. L.; Wang, J. Z.; Ma, X.; Tang, J. Y.; Wang, W. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem. Commun. 2020, 56, 4728–4731.

201

Wu, Y. F.; Dong, R. F.; Zhang, Q. L.; Ren, B. Y. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au janus micromotors. Nano-Micro Lett. 2017, 9, 30.

202

Liu, W. Y.; Zhang, J. L.; Liu, H.; Guo, X. N.; Zhang, X. Y.; Yao, X. L.; Cao, Z. G.; Zhang, T. T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277.

203

Padervand, M.; Lichtfouse, E.; Robert, D.; Wang, C. Y. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 2020, 18, 807–828.

204

Ji, F. T.; Wang, B.; Zhang, L. Light-triggered catalytic performance enhancement using magnetic nanomotor ensembles. Research 2020, 2020, 6380794.

205

Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.

206

Wu, Y. J.; Lin, X. K.; Wu, Z. G.; Möhwald, H.; He, Q. Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces 2014, 6, 10476–10481.

207

Karaca, G. Y.; Kuralay, F.; Uygun, E.; Ozaltin, K.; Demirbuken, S. E.; Garipcan, B.; Oksuz, L.; Oksuz, A. U. Gold-nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery. ACS Appl. Nano Mater. 2021, 4, 3377–3388.

208

Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 2018, 12, 9617–9625.

209

Mhanna, R.; Qiu, F. M.; Zhang, L.; Ding, Y.; Sugihara, K.; Zenobi-Wong, M.; Nelson, B. J. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 2014, 10, 1953–1957.

210

Servant, A.; Qiu, F. M.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981–2988.

211

Li, J. Y.; Li, X. J.; Luo, T.; Wang, R.; Liu, C. C.; Chen, S. X.; Li, D. F.; Yue, J. B.; Cheng, S. H.; Sun, D. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3, eaat8829.

212

Jeon, S.; Kim, S.; Ha, S.; Lee, S.; Kim, E.; Kim, S. Y.; Park, S. H.; Jeon, J. H.; Kim, S. W.; Moon, C. et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 2019, 4, eaav4317.

213

Liang, C. Y.; Zhan, C.; Zeng, F. Y.; Xu, D. D.; Wang, Y.; Zhao, W. W.; Zhang, J. H.; Guo, J. H.; Feng, H. H.; Ma, X. Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 2018, 10, 35099–35107.

214

Hughes, M. P. Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics 2016, 10, 032801.

215

Fan, D. L.; Cammarata, R. C.; Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett. 2008, 92, 093115.

216

Gagnon, Z. R. Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 2011, 32, 2466–2487.

217

Kim, K.; Xu, X. B.; Guo, J. H.; Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 2014, 5, 3632.

218
Jones, T. B. Electromechanics of Particles; Cambridge University Press: UK, 2005.
219

Qin, Y. L.; Wu, L.; Schneider, T.; Yen, G. S.; Wang, J. S.; Xu, S. H.; Li, M.; Paguirigan, A. L.; Smith, J. L.; Radich, J. P. et al. A self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture, on-demand compartmentalization, and downstream nucleic acid analysis. Angew. Chem., Int. Ed. 2018, 57, 11378–11383.

220

Lin, W. Y.; Lin, Y. H.; Lee, G. B. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 2010, 8, 217–229.

221

Liang, Z. X.; Fan, D. L. Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 2018, 4, eaau0981.

222

Liang, Z. X.; Teal, D.; Fan, D. L. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 2019, 10, 5275.

223

Cao, F.; Yu, D. J.; Gu, Y.; Chen, J.; Zeng, H. B. Novel optoelectronic rotors based on orthorhombic CsPb(Br/I)3 nanorods. Nanoscale 2019, 11, 3117–3122.

224

Dai, J.; Cheng, X.; Li, X. F.; Wang, Z. S.; Wang, Y. F.; Zheng, J.; Liu, J.; Chen, J. W.; Wu, C. J.; Tang, J. Y. Solution-synthesized multifunctional janus nanotree microswimmer. Adv. Funct. Mater. 2021, 31, 2106204.

225

Zhang, S. L.; Scott, E. Y.; Singh, J.; Chen, Y. J.; Zhang, Y. F.; Elsayed, M.; Chamberlain, M. D.; Shakiba, N.; Adams, K.; Yu, S. Y. et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proc. Natl. Acad. Sci. USA 2019, 116, 14823–14828.

226

Zhang, S. L.; Elsayed, M.; Peng, R.; Chen, Y. J.; Zhang, Y. F.; Peng, J. X.; Li, W. Z.; Chamberlain, M. D.; Nikitina, A.; Yu, S. Y. et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun. 2021, 12, 5349.

227

Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

228

Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 2009, 5, 1688–1692.

229

Li, J. X.; Singh, V. V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R. F.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014, 8, 11118–11125.

230

Chen, C. R.; Tang, S. S.; Teymourian, H.; Karshalev, E.; Zhang, F. Y.; Li, J. X.; Mou, F. Z.; Liang, Y. Y.; Guan, J. G.; Wang, J. Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem., Int. Ed. 2018, 57, 8110–8114.

231

Lv, H. Z.; Xing, Y.; Du, X.; Xu, T. L.; Zhang, X. J. Construction of dendritic Janus nanomotors with H2O2 and NIR light dual-propulsion via a Pickering emulsion. Soft Matter 2020, 16, 4961–4968.

232

Zhou, C.; Chen, X.; Han, Z. Y.; Wang, W. Photochemically excited, pulsating janus colloidal motors of tunable dynamics. ACS Nano 2019, 13, 4064–4072.

233

Ibele, M. E.; Lammert, P. E.; Crespi, V. H.; Sen, A. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 2010, 4, 4845–4851.

234

Zhou, C.; Wang, Q. Z.; Lv, X. L.; Wang, W. Non-oscillatory micromotors “learn” to oscillate on-the-fly from oscillating Ag micromotors. Chem. Commun. 2020, 56, 6499–6502.

235

Zhou, C.; Suematsu, N. J.; Peng, Y. X.; Wang, Q. Z.; Chen, X.; Gao, Y. X.; Wang, W. Coordinating an ensemble of chemical micromotors via spontaneous synchronization. ACS Nano 2020, 14, 5360–5370.

236

Altemose, A.; Sánchez-Farrán, M. A.; Duan, W. T.; Schulz, S.; Borhan, A.; Crespi, V. H.; Sen, A. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem., Int. Ed. 2017, 56, 7817–7821.

237

Wang, W.; Li, S. X.; Mair, L.; Ahmed, S.; Huang, T. J.; Mallouk, T. E. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem., Int. Ed. 2014, 53, 3201–3204.

238

Ahmed, S.; Wang, W.; Bai, L. J.; Gentekos, D. T.; Hoyos, M.; Mallouk, T. E. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 2016, 10, 4763–4769.

239

Zhou, D. K.; Gao, Y.; Yang, J. J.; Li, Y. C.; Shao, G. B.; Zhang, G. Y.; Li, T. L.; Li, L. Q. Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 2018, 5, 1800122.

240

Tang, S. S.; Zhang, F. Y.; Zhao, J.; Talaat, W.; Soto, F.; Karshalev, E.; Chen, C. R.; Hu, Z. H.; Lu, X. L.; Li, J. X. et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls. Adv. Funct. Mater. 2019, 29, 1809003.

241

Xu, T. L.; Luo, Y.; Liu, C. H.; Zhang, X. J.; Wang, S. T. Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal. Chem. 2020, 92, 7816–7821.

242

Das, S.; Garg, A.; Campbell, A. I.; Howse, J.; Sen, A.; Velegol, D.; Golestanian, R.; Ebbens, S. J. Boundaries can steer active Janus spheres. Nat. Commun. 2015, 6, 8999.

243

Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M. Self-propulsion of a catalytically active particle near a planar wall: From reflection to sliding and hovering. Soft Matter 2015, 11, 434–438.

244

Liu, C.; Zhou, C.; Wang, W.; Zhang, H. P. Bimetallic microswimmers speed up in confining channels. Phys. Rev. Lett. 2016, 117, 198001.

File
12274_2022_4119_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 October 2021
Revised: 23 November 2021
Accepted: 28 December 2021
Published: 19 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005119, 21731002, and 21975104), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110404), Guangzhou Basic and Applied Basic Research Foundation (No. 202102020444), Guangdong Major Project of Basic and Applied Research (No. 2019B030302009), the Hong Kong Research Grants Council (RGC) General Research Fund (Nos. GRF17305917, GRF17303015, and GRF17304618), the Seed Funding for Interdisciplinary Research (University of Hong Kong), the Science Technology and Innovation Program of Shenzhen (No. JCYJ20170818141618963), and the Shenzhen-Hong Kong Innovation Circle Program (No. SGDX2019081623341332).

Return