Journal Home > Volume 15 , Issue 6

Lead sulfide (PbS), a typical functional semiconductor material, has attracted serious attention due to its great potential in optoelectronics applications. However, controllable growth of PbS single-crystal film still remains a great challenge. Here, we report heteroepitaxial growth of large-scale highly crystalline PbS films on alkali salt (NaCl and KCl) substrates via chemical vapor deposition (CVD). Structural characterizations demonstrate that the as-grown PbS films exhibit an atomically sharp interface with the underlying substrates. The epitaxial relationships between the epilayers and substrates were determined to be PbS (100)//NaCl (100) or KCl (100), PbS [010]//NaCl [010] or KCl [010]. Owing to the high solubility of alkali salt, the epitaxial PbS films can be rapidly released from the underlying substrates and transferred to other substrates of interest while maintaining good integrity and crystallinity, the process of which is particularly attractive in the fields of electronics and optoelectronics. Furthermore, photodetectors based on the transferred PbS films were fabricated, exhibiting a high photoresponsivity of 7.5 A/W, a detectivity of 1.44 × 1012 Jones, and a rapid response time of approximately 0.25 s. This work sheds light on the batch production, green transfer, and optoelectronic application of PbS films.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors

Show Author's information Yifan Wang1,2Jing Xia1( )Xuanze Li1Fan Ru1,3Xue Chen4Ze Hua5Ruiwen Shao6Xuecong Wang1Wenjun Zhang7Chun-Sing Lee8Xiangmin Meng1( )
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 10049, China
Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China
Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Convergence in Medicine and Engineering, Beijing Institute of Technology, Beijing 100081, China
Center of Super-Diamond and Advanced Films (COSADF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, China

Abstract

Lead sulfide (PbS), a typical functional semiconductor material, has attracted serious attention due to its great potential in optoelectronics applications. However, controllable growth of PbS single-crystal film still remains a great challenge. Here, we report heteroepitaxial growth of large-scale highly crystalline PbS films on alkali salt (NaCl and KCl) substrates via chemical vapor deposition (CVD). Structural characterizations demonstrate that the as-grown PbS films exhibit an atomically sharp interface with the underlying substrates. The epitaxial relationships between the epilayers and substrates were determined to be PbS (100)//NaCl (100) or KCl (100), PbS [010]//NaCl [010] or KCl [010]. Owing to the high solubility of alkali salt, the epitaxial PbS films can be rapidly released from the underlying substrates and transferred to other substrates of interest while maintaining good integrity and crystallinity, the process of which is particularly attractive in the fields of electronics and optoelectronics. Furthermore, photodetectors based on the transferred PbS films were fabricated, exhibiting a high photoresponsivity of 7.5 A/W, a detectivity of 1.44 × 1012 Jones, and a rapid response time of approximately 0.25 s. This work sheds light on the batch production, green transfer, and optoelectronic application of PbS films.

Keywords: photodetector, heteroepitaxial growth, lead sulfide (PbS), single-crystal film, transferable

References(60)

1

Grayli, S. V.; Zhang, X.; MacNab, F. C.; Kamal, S.; Star, D.; Leach, G. W. Scalable, green fabrication of single-crystal noble metal films and nanostructures for low-loss nanotechnology applications. ACS Nano 2020, 14, 7581–7592.

2

Lu, D.; Baek, D. J.; Hong, S. S.; Kourkoutis, L. F.; Hikita, Y.; Hwang, H. Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260.

3

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J. Y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

4

Xu, Y. J.; Shi, X. Y.; Zhang, Y. S.; Zhang, H. T.; Zhang, Q. L.; Huang, Z. L.; Xu, X. F.; Guo, J.; Zhang, H.; Sun, L. T. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.

5

Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

6

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 2019, 106, 100573.

7
Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res., in press, DOI: 10.1007/s12274-021-3779-z.https://doi.org/10.1007/s12274-021-3779-z
DOI
8

Xiao, Y.; Wang, D. Y.; Zhang, Y.; Chen, C. R.; Zhang, S. X.; Wang, K. D.; Wang, G. T.; Pennycook, S. J.; Snyder, G. J.; Wu, H. J. et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060.

9

Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

10

Moayed, M. M. R.; Kull, S.; Rieckmann, A.; Beck, P.; Wagstaffe, M.; Noei, H.; Kornowski, A.; Hungria, A. B.; Lesyuk, R.; Stierle, A. et al. Function follows form: From semiconducting to metallic toward superconducting PbS nanowires by faceting the crystal. Adv. Funct. Mater. 2020, 30, 1910503.

11

Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H. et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis–NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.

12

Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717.

13

Moayed, M. M. R.; Bielewicz, T.; Noei, H.; Stierle, A.; Klinke, C. High-performance n- and p-type field-effect transistors based on hybridly surface-passivated colloidal PbS nanosheets. Adv. Funct. Mater. 2018, 28, 1706815.

14

Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.

15

Xia, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

16

Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; De Arquer, F. P. G. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

17

Yang, C.; Feng, S. L.; Tang, L. L.; Shen, J.; Wei, X. Z.; Shi, H. F. Electrochemical epitaxial grown PbS nanorods array on graphene film for high-performance photodetector. Adv. Mater. Interfaces 2021, 8, 2001464.

18

Ren, Z. W.; Sun, J. K.; Li, H.; Mao, P.; Wei, Y. Z.; Zhong, X. H.; Hu, J. S.; Yang, S. Y.; Wang, J. Z. Bilayer PbS quantum dots for high-performance photodetectors. Adv. Mater. 2017, 29, 1702055.

19

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

20

Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

21

Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: Pbte-PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

22

Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

23

Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

24

Popov, G.; Bačić, G.; Mattinen, M.; Manner, T.; Lindström, H.; Seppänen, H.; Suihkonen, S.; Vehkamaki, M.; Kemell, M.; Jalkanen, P. et al. Atomic layer deposition of PbS thin films at low temperatures. Chem. Mater. 2020, 32, 8216–8228.

25

Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.

26

Zheng, Z. Q.; Yao, J. D.; Li, J. B.; Yang, G. W. Non-layered 2D materials toward advanced photoelectric devices: Progress and prospects. Mater. Horiz. 2020, 7, 2185–2207.

27

Wang, F.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Yin, L.; Xu, K.; Huang, Y.; He, J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 2015, 26, 292001.

28

Fichthorn, K. A pathway from 3D to 2D. Nat. Mater. 2019, 18, 911–912.

29

Li, W. G.; Wang, X. D.; Liao, J. F.; Jiang, Y.; Kuang, D. B. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701.

30

Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

31

Jia, T.; Rebec, S. N.; Tang, S. J.; Xu, K. J.; Sohail, H. M.; Hashimoto, M.; Lu, D. H.; Moore, R. G.; Shen, Z. X. Epitaxial growth of TiSe2/TiO2 heterostructure. 2D Mater. 2019, 6, 011008.

32

Fu, H. C.; Ramalingam, V.; Kim, H.; Lin, C. H.; Fang, X. S.; Alshareef, H. N.; He, J. H. Mxene-contacted silicon solar cells with 11. 5% efficiency. Adv. Energy Mater. 2019, 9, 1900180.

33
Deshpande, V.; Djara, V.; O’Connor, E.; Hashemi, P.; Balakrishnan, K.; Sousa, M.; Caimi, D.; Olziersky, A.; Czornomaz, L.; Fompeyrine, J. Advanced 3D monolithic hybrid CMOS with sub-50 nm gate inverters featuring replacement metal gate (RMG)-InGaAs nFETs on SiGe-OI fin pFETs. In 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015.
34

Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525–13532.

35

Ji, L.; Hsu, H. Y.; Lee, J. C.; Bard, A. J.; Yu, E. T. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 2018, 18, 994–1000.

36

Lee, L.; Baek, J.; Park, K. S.; Lee, Y. E.; Shrestha, N. K.; Sung, M. M. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 2017, 8, 15882.

37

Wang, Y. F.; Yang, F.; Li, X. Z.; Ru, F.; Liu, P.; Wang, L.; Ji, W.; Xia, J.; Meng, X. M. Epitaxial growth of large-scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv. Funct. Mater. 2019, 29, 1904913.

38

Wang, Y. F.; Li, X. Z.; Liu, P.; Xia, J.; Meng, X. M. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection. J. Semicond. 2021, 42, 112001.

39

Avila, J. R.; Qadri, S. B.; Freitas, J. A. Jr.; Nepal, N.; Boris, D. R.; Walton, S. G.; Eddy, C. R. Jr.; Wheeler, V. D. Impact of growth conditions on the phase selectivity and epitaxial quality of TiO2 films grown by the plasma-assisted atomic layer deposition. Chem. Mater. 2019, 31, 3900–3908.

40

Wang, Y. P.; Shi, Y. F.; Xin, G. Q.; Lian, J.; Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 2015, 15, 4741–4749.

41

Wang, X. D.; Li, W. G.; Liao, J. F.; Kuang, D. B. Recent advances in halide perovskite single-crystal thin films: Fabrication methods and optoelectronic applications. Solar RRL 2019, 3, 1800294.

42

Egerton, R. Radiation damage and nanofabrication in tem and stem. Microsc. Today 2021, 29, 56–59.

43

Egerton, R. F. Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 2012, 75, 1550–1556.

44

Bennewitz, R.; Schär, S.; Barwich, V.; Pfeiffer, O.; Meyer, E.; Krok, F.; Such, B.; Kolodzej, J.; Szymonski, M. Atomic-resolution images of radiation damage in KBr. Surf. Sci. 2001, 474, L197–L202.

45

Lehnert, T.; Kretschmer, S.; Bräuer, F.; Krasheninnikov, A. V.; Kaiser, U. Quasi-two-dimensional NaCl crystals encapsulated between graphene sheets and their decomposition under an electron beam. Nanoscale 2021, 13, 19626–19633.

46

Cao, H. Q.; Wang, G. Z.; Zhang, S. C.; Zhang, X. R. Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 2006, 17, 3280–3287.

47

Smith, G. D.; Firth, S.; Clark, R. J. H.; Cardona, M. First- and second-order Raman spectra of galena (PbS). J. Appl. Phys. 2002, 92, 4375–4380.

48

Krauss, T. D.; Wise, F. W. Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys. Rev. B 1997, 55, 9860–9865.

49

Deng, B.; Zhong, S. L.; Wang, D. H.; Wang, S. S.; Zhang, T. K.; Qu, W. G.; Xu, A. W. High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template. Nanoscale 2011, 3, 1014–1021.

50

Lee, D. K.; Kim, S.; Oh, S.; Choi, J. Y.; Lee, J. L.; Yu, H. K. Water-soluble epitaxial NaCl thin film for fabrication of flexible devices. Sci. Rep. 2017, 7, 8716.

51

Dong, W. J.; Kim, S.; Park, J. Y.; Yu, H. K.; Lee, J. L. Ultrafast and chemically stable transfer of au nanomembrane using a water-soluble NaCl sacrificial layer for flexible solar cells. ACS Appl. Mater. Interfaces 2019, 11, 30477–30483.

52

Wang, H.; Schechtel, E.; Pei, Y. Z.; Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 2013, 3, 488–495.

53

Johnsen, S.; He, J. Q.; Androulakis, J.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 2011, 133, 3460–3470.

54

Xiao, X. B.; Xu, K. M.; Yin, M.; Qiu, Y.; Zhou, W. J.; Zheng, L.; Cheng, X. H.; Yu, Y. H.; Ning, Z. J. High quality silicon: Colloidal quantum dot heterojunction based infrared photodetector. Appl. Phys. Lett. 2020, 116, 101102.

55

Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051–8057.

56

Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558–7566.

57

Akkerman, Q. A.; Martin-Garcia, B.; Buha, J.; Almeida, G.; Toso, S.; Marras, S.; Bonaccorso, F.; Petralanda, U.; Infante, I.; Manna, L. Ultrathin orthorhombic PbS nanosheets. Chem. Mater. 2019, 31, 8145–8153.

58

Nian, Q.; Gao, L.; Hu, Y. W.; Deng, B. W.; Tang, J.; Cheng, G. J. Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 44715–44723.

59

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

60

Hussain, M.; Jaffery, S. H. A.; Ali, A.; Nguyen, C. D.; Aftab, S.; Riaz, M.; Abbas, S.; Hussain, S.; Seo, Y.; Jung, J. Nir self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode. Sci. Rep. 2021, 11, 3688.

File
12274_2022_4101_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 September 2021
Revised: 26 December 2021
Accepted: 26 December 2021
Published: 06 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge Beijing Advanced Innovation Center for Intelligent Robots and Systems in Beijing Institute of Technology for the use of FIB and TEM.Financial support was provided by the National Natural Science Foundation of China (No. 11704389), the Scientific Equipment Development Project and Youth Innovation Promotion Association Project of Chinese Academy of Sciences.

Return