Journal Home > Volume 15 , Issue 5

Elastic strain has been an important method to regulate the electronic structures and physical properties of nanoscale semiconductors due to the promising potentials in improving the performance of their optoelectronic devices. Here, we report the investigation of bending strain effects on the optical and optoelectric properties of individual gallium nitride (GaN) nanowires (NWs). By charactering the near-band emission spectrum of individual GaN NWs at different bending strains with low temperature cathodoluminescence (CL), we reveal that the near-band emission splits into two peaks, where the low energy peak displays a linear redshift with increasing the bending strain while the high energy one shows a slight blueshift. Further localized ultraviolet (UV) photoresponse measurements illustrate that the photoresponse of the GaN NWs shows a linear increase with the bending train, and the maximum enhancement is more than two orders of magnitude. The experimental observations are well interpreted by theoretical calculations on the strain modulation on the electronic band structure of GaN combined with analysis of carrier dynamics and optical waveguide effect in the bending strain field. Our results not only shed light on the bending strain effects on the optical and optoelectric properties of semiconductors, but also hold potential to help the future design of high performance nano-optoelectric devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bending strain effects on the optical and optoelectric properties of GaN nanowires

Show Author's information Xuewen Fu1,§( )Haixia Nie1,§Zepeng Sun1Min Feng1Xiang Chen1Can Liu1Fang Liu1Dapeng Yu2Zhimin Liao3,4( )
Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China

§ Xuewen Fu and Haixia Nie contributed equally to this work.

Abstract

Elastic strain has been an important method to regulate the electronic structures and physical properties of nanoscale semiconductors due to the promising potentials in improving the performance of their optoelectronic devices. Here, we report the investigation of bending strain effects on the optical and optoelectric properties of individual gallium nitride (GaN) nanowires (NWs). By charactering the near-band emission spectrum of individual GaN NWs at different bending strains with low temperature cathodoluminescence (CL), we reveal that the near-band emission splits into two peaks, where the low energy peak displays a linear redshift with increasing the bending strain while the high energy one shows a slight blueshift. Further localized ultraviolet (UV) photoresponse measurements illustrate that the photoresponse of the GaN NWs shows a linear increase with the bending train, and the maximum enhancement is more than two orders of magnitude. The experimental observations are well interpreted by theoretical calculations on the strain modulation on the electronic band structure of GaN combined with analysis of carrier dynamics and optical waveguide effect in the bending strain field. Our results not only shed light on the bending strain effects on the optical and optoelectric properties of semiconductors, but also hold potential to help the future design of high performance nano-optoelectric devices.

Keywords: cathodoluminescence, energy band structure, bending strain, GaN nanowires, ultraviolet photoresponse

References(56)

1

Ieong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the sub-10-nm regime. Science 2004, 306, 2057–2060.

2

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

3

Yang, M. M.; Kim, D. J.; Alexe, M. Flexo-photovoltaic effect. Science 2018, 360, 904–907.

4

Wei, B.; Zheng, K.; Ji, Y. F.; Zhang, Y.; Zhang, Z.; Han, X. D. Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 2012, 12, 4595–4599.

5

Signorello, G.; Karg, S.; Björk, M. T.; Gotsmann, B.; Riel, H. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 2013, 13, 917–924.

6

Han, X. B.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z. M.; Zhang, X. Z. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

7

Dietrich, C.; Lange, M.; Klüpfel, F.; Von Wenckstern, H.; Schmidt-Grund, R.; Grundmann, M. Strain distribution in bent ZnO microwires. Appl. Phys. Lett. 2011, 98, 031105.

8

Xue, H. Z.; Pan, N.; Li, M.; Wu, Y. K.; Wang, X. P.; Hou, J. G. Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 2010, 21, 215701.

9

Han, X. B.; Kou, L. Z.; Zhang, Z. H.; Zhang, Z Y.; Zhu, X. L.; Xu, J.; Liao, Z. M.; Guo, W. L.; Yu, D. P. Strain-gradient effect on energy bands in bent ZnO microwires. Adv. Mater. 2012, 24, 4707–4711.

10

Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.

11

Sun, L. X.; Kim, D. H.; Oh, K. H.; Agarwal, R. Strain-induced large exciton energy shifts in buckled CdS nanowires. Nano Lett. 2013, 13, 3836–3842.

12

Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308–314.

13

Fu, X. W.; Liao, Z. M.; Ye, Y.; Xu, J.; Dai, L.; Zhu, R.; Guo, W. L.; Yu, D. P. Outermost tensile strain dominated exciton emission in bending CdSe nanowires. Sci. China Mater. 2014, 57, 26–33.

14

Kim, Y.; Im, H. S.; Park, K.; Kim, J.; Ahn, J. P.; Yoo, S. J.; Kim, J. G.; Park, J. Bent polytypic ZnSe and CdSe nanowires probed by photoluminescence. Small 2017, 13, 1603695.

15

Dadgar, A.; Hums, C.; Diez, A.; Bläsing, J.; Krost, A. Growth of blue GaN LED structures on 150-mm Si(111). J. Cryst. Growth 2006, 297, 279–282.

16

Wu, Y. F.; Saxler, A.; Moore, M.; Smith, R. P.; Sheppard, S.; Chavarkar, P. M.; Wisleder, T.; Mishra, U. K.; Parikh, P. 30-W·mm−1 GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 2004, 25, 117–119.

17

Baliga, B. J. Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 2013, 28, 074011.

18

Chen, C. Y.; Song, J.; Zhu, G.; Hu, Y. F.; Yu, J. W.; Song, J. H.; Cheng, K. Y.; Peng, L. H.; Chou, L. J.; Wang, Z. L. Gallium nitride nanowire based nanogenerators and light-emitting diodes. ACS Nano 2012, 6, 5687–5692.

19

Hersee, S. D.; Fairchild, M.; Rishinaramangalam, A. K.; Ferdous, M. S.; Zhang, L.; Varangis, P. M.; Swartzentruber, B. S.; Talin, A. A. GaN nanowire light emitting diodes based on templated and scalable nanowire growth process. Electron. Lett. 2009, 45, 75–76.

20

Li, C. Y.; Liu, S.; Luk, T. S.; Figiel, J. J.; Brener, I.; Brueck, S. R. J.; Wang, G. T. Intrinsic polarization control in rectangular GaN nanowire lasers. Nanoscale 2016, 8, 5682–5687.

21

Li, C. Y.; Wright, J. B.; Liu, S.; Lu, P.; Figiel, J. J.; Leung, B.; Chow, W. W.; Brener, I.; Koleske, D. D.; Luk, T. S. et al. Nonpolar InGaN/GaN core-shell single nanowire lasers. Nano Lett. 2017, 17, 1049–1055.

22

Weng, W. Y.; Hsueh, T. J.; Chang, S. J.; Wang, S. B.; Hsueh, H. T.; Huang, G. J. A high-responsivity GaN nanowire UV photodetector. IEEE J. Select. Top. Quantum Electron. 2011, 17, 996–1001.

23

Zhang, X. L.; Liu, Q. Y.; Liu, B. D.; Yang, W. J.; Li, J.; Niu, P. J.; Jiang, X. Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling. J. Mater. Chem. C 2017, 5, 4319–4326.

24

Sabui, G.; Zubialevich, V. Z.; Pampili, P.; White, M.; Parbrook, P. J.; McLaren, M.; Arredondo-Arechavala, M.; Shen, Z. J. Simulation study of high voltage vertical GaN nanowire field effect transistors. ECS Trans. 2017, 80, 69–85.

25

Witzigmann, B.; Yu, F.; Frank, K.; Strempel, K.; Fatahilah, M. F.; Schumacher, H. W.; Wasisto, H. S.; Röemer, F.; Waag, A. Performance analysis and simulation of vertical gallium nitride nanowire transistors. Solid-State Electron. 2018, 144, 73–77.

26

Jiang, H. P.; Su, Y. J.; Zhu, J.; Lu, H. M; Meng, X. K. Piezoelectric and pyroelectric properties of intrinsic GaN nanowires and nanotubes: Size and shape effects. Nano Energy 2018, 45, 359–367.

27

Elm, M. T.; Uredat, P.; Binder, J.; Ostheim, L.; Schäefer, M.; Hille, P.; Müßener, J.; Schoermann, J.; Eickhoff, M.; Klar, P. J. Doping-induced universal conductance fluctuations in GaN nanowires. Nano Lett. 2015, 15, 7822–7828.

28

Tham, D.; Nam, C. Y.; Fischer, J. E. Defects in GaN nanowires. Adv. Funct. Mater. 2006, 16, 1197–1202.

29

Bernal, R. A.; Agrawal, R.; Peng, B.; Bertness, K. A.; Sanford, N. A.; Davydov, A. V.; Espinosa, H. D. Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 2011, 11, 548–555.

30

Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V. D.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005, 5, 981–984.

31

Kamimura, J.; Bogdanoff, P.; Ramsteiner, M.; Corfdir, P.; Feix, F.; Geelhaar, L.; Riechert, H. p-Type doping of GaN nanowires characterized by photoelectrochemical measurements. Nano Lett. 2017, 17, 1529–1537.

32

Hersee, S. D.; Rishinaramangalam, A. K.; Fairchild, M. N.; Zhang, L.; Varangis, P. Threading defect elimination in GaN nanowires. J. Mater. Res. 2011, 26, 2293–2298.

33

Seo, H. W.; Bae, S. Y.; Park, J.; Yang, H.; Park, K. S.; Kim, S. Strained gallium nitride nanowires. J. Chem. Phys. 2002, 116, 9492–9499.

34

Xia, S. H.; Liu. L.; Kong, Y. K.; Wang, M. S. Uniaxial strain effects on the optoelectronic properties of GaN nanowires. Superlattices Microstruct. 2016, 97, 327–334.

35

Chen, X.; Wang, Y. G.; Jian, J. K.; Gu, L.; Zhang, Z. H. Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain. Prog. Nat. Sci. Mater. Int. 2017, 27, 430–434.

36

Shi, X. Q.; Peng, M. Z.; Kou, J. Z.; Liu, C. H. Wang, R.; Liu, Y. D.; Zhai, J. Y. A flexible GaN nanowire array-based schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv. Electron. Mater. 2015, 1, 1500169.

37

Peng, M. Z.; Liu, Y. D.; Yu, A. F.; Zhang, Y.; Liu, C. H.; Liu, J. Y.; Wu, W.; Zhang, K.; Shi, X. Q.; Kou, J. Z. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579.

38

Zheng, Q.; Peng, M. Z.; Liu, Z.; Li, S. Y.; Han, R. C.; Ouyang, H.; Fan, Y. B.; Pan, C. F.; Hu, W. G.; Zhai, J. Y. et al. Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Sci. Adv. 2021, 7, eabe7738.

39

Nabi, G.; Cao, C. B.; Usman, Z.; Hussain, S.; Khan, W. S.; Butt, F. K.; Ali, Z.; Yu, D. P.; Fu, X. W. Pre-treatment effect of aqueous NH3 on conductivity enhancement and PL properties of GaN nanowires. Mater. Lett. 2012, 70, 19–22.

40

Liao, Z. M.; Wu, H. C.; Fu, Q.; Fu, X. W.; Zhu, X. L.; Xu, J.; Shvets, I. V.; Zhang, Z. H.; Guo, W. L.; Leprince-Wang, Y. et al. Strain induced exciton fine-structure splitting and shift in bent ZnO microwires. Sci. Rep. 2012, 2, 452.

41

Fu, X. W.; Fu, Q.; Kou, L. Z.; Zhu, X. L.; Zhu, R.; Xu, J.; Liao, Z. M.; Zhao, Q.; Guo, W. L.; Yu, D. P. Modifying optical properties of ZnO nanowires via strain-gradient. Front. Phys. 2013, 8, 509–515.

42

Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

43

Fu, X. W.; Jacopin, G.; Shahmohammadi, M.; Liu, R.; Benamèur, M.; Ganiere, J. D.; Feng, J.; Guo, W. L.; Liao, Z. M.; Deveaud, B. et al. Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires. ACS Nano 2014, 8, 3412–3420.

44

Fu, X. W.; Su, C.; Fu, Q.; Zhu, X. L.; Zhu, R.; Liu, C. P.; Liao, Z. M.; Xu, J.; Guo, W. L.; Feng, J. et al. Tailoring exciton dynamics by elastic strain‐gradient in semiconductors. Adv. Mater. 2014, 26, 2572–2579.

45

Guo, W.; Yang, Y.; Qi, J. J.; Zhao, J.; Zhang, Y. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires. Appl. Phys. Lett. 2010, 97, 133112.

46

Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

47

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

48

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

49

Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

50

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

51

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

52

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

53

Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

54

Cheung, S. K.; Cheung, N. W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87.

55

Kalinina, E. V.; Kuznetsov, N. I.; Dmitriev, V. A.; Irvine, K. G.; Carter, C. H. Schottky barriers on n-GaN grown on SiC. J. Electron. Mater. 1996, 25, 831–834.

56

El-Gabaly, M.; Nigrin, J.; Goud, P. A. Stationary charge transport in metal-semiconductor-metal (MSM) structures. J. Appl. Phys. 1973, 44, 4672–4680.

File
12274_2022_4080_MOESM1_ESM.pdf (603.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2021
Revised: 30 November 2021
Accepted: 17 December 2021
Published: 21 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11974191), the National Key Research and Development Program of China (No. 2020YFA0309300), the Natural Science Foundation of Tianjin (Nos. 20JCZDJC00560 and 20JCJQJC00210), the 111 Project (No. B07013), and the “Fundamental Research Funds for the Central Universities”, Nankai University (Nos. 91923139, 63213040, and C029211101).

Return