Journal Home > Volume 15 , Issue 5

Monolayer (1L) transition metal dichalcogenides (TMDCs) have been attracting tremendous interest in recent years as promising candidate materials in atomic-scale optoelectronic devices due to their direct band gaps (1.5–2.2 eV) and strong light–matter interactions. Unfortunately, their practical applications are limited by low visible light absorption stemming from atomic thickness and negligible infrared response. Here, we report the triangular Sb2O3 microresonators in wide thickness and lateral size distributions grown on 1L TMDCs and their created significant broadband enhancement of light adsorption and photoresponse in 1L WSe2 crystal via coexisting Fabry–Perot and whispering gallery type resonances. As an example of demonstration, 1L WSe2 crystal coupled to Sb2O3 microresonators with widely distributed sizes exhibits the enhanced visible light absorption by up to 5 folds and the simultaneously extended near infrared (NIR) one of more than 50%. For application of 1L WSe2 in photodetection, incorporation of Sb2O3 microresonators leads to significantly enhanced visible light responsivity by ~ 104 order and expanded NIR one of more than 400 mA·W−1. Similar results have been observed in the other 1L W(Mo) dichalcogenides coupled to Sb2O3 microresonators. This work provides a new route for development of the high-performance monolayer TMDCs-based optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Broadband light absorption and photoresponse enhancement in monolayer WSe2 crystal coupled to Sb2O3 microresonators

Show Author's information Kun Ye1,§Lixuan Liu1,3,§Congpu Mu1,2( )Kun Zhai1( )Shiliang Guo4Bochong Wang1,2Anmin Nie1Shuhan Meng4Fusheng Wen1Jianyong Xiang1Tianyu Xue1Ming Kang5Yongji Gong3Yongjun Tian1Zhongyuan Liu1( )
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
Hebei Key Laboratory of Microstructure Materials Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China

§ Kun Ye and Lixuan Liu contributed equally to this work.

Abstract

Monolayer (1L) transition metal dichalcogenides (TMDCs) have been attracting tremendous interest in recent years as promising candidate materials in atomic-scale optoelectronic devices due to their direct band gaps (1.5–2.2 eV) and strong light–matter interactions. Unfortunately, their practical applications are limited by low visible light absorption stemming from atomic thickness and negligible infrared response. Here, we report the triangular Sb2O3 microresonators in wide thickness and lateral size distributions grown on 1L TMDCs and their created significant broadband enhancement of light adsorption and photoresponse in 1L WSe2 crystal via coexisting Fabry–Perot and whispering gallery type resonances. As an example of demonstration, 1L WSe2 crystal coupled to Sb2O3 microresonators with widely distributed sizes exhibits the enhanced visible light absorption by up to 5 folds and the simultaneously extended near infrared (NIR) one of more than 50%. For application of 1L WSe2 in photodetection, incorporation of Sb2O3 microresonators leads to significantly enhanced visible light responsivity by ~ 104 order and expanded NIR one of more than 400 mA·W−1. Similar results have been observed in the other 1L W(Mo) dichalcogenides coupled to Sb2O3 microresonators. This work provides a new route for development of the high-performance monolayer TMDCs-based optoelectronic devices.

Keywords: transition metal dichalcogenides, photodetectors, broad bandwidth, Sb2O3 optical microresonator , enhanced absorption

References(33)

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34.

3

Zhou, J. Y.; Xie, M. Z.; Ji, H.; Cui, A. Y.; Ye, Y.; Jiang, K.; Shang, L. Y.; Zhang, J. Z.; Hu, Z. G.; Chu, J. H. Mixed-dimensional van der Waals heterostructure photodetector. ACS Appl. Mater. Interfaces 2020, 12, 18674–18682.

4

Ye, K.; Liu, L. X.; Liu, Y. J.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.

5

Bahauddin, S. M.; Robatjazi, H.; Thomann, I. Broadband absorption engineering to enhance light absorption in monolayer MoS2. ACS Photonics 2016, 3, 853–862.

6

Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Chrenk, W.; Strasser, G. et al. Microcavity-integrated graphene photodetector. Nano Letters 2012, 12, 2773–2777.

7

Wang, Q.; Guo, J.; Ding, Z. J.; Qi, D. Y.; Jiang, J. Z.; Wang, Z.; Chen, W.; Xiang, Y. J.; Zhang, W. J.; Wee, A. T. S. Fabry−Perot cavity-enhanced optical absorption in ultrasensitive tunable photodiodes based on hybrid 2D materials. Nano Lett. 2017, 17, 7593–7598.

8

Tao, L.; Chen Z. F.; Li, Z. Y.; Wang, J. Q.; Xu, X.; Xu, J. B. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. InfoMat 2021, 3, 36–60.

9

Wen, X. L.; Xu, W. G.; Zhao, W. J.; Khurgin, J. B.; Xiong, Q. H. Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Lett. 2018, 18, 1686–1692.

10

Mey, O.; Wall, F.; Schneider, L. M.; Günder, D.; Walla, F.; Soltani, A.; Roskos, H.; Yao, N.; Qing, P.; Fang, W. et al. Enhancement of the monolayer tungsten disulfide exciton photoluminescence with a two-dimensional material/air/gallium phosphide in-plane microcavity. ACS Nano 2019, 13, 5259–5267.

11

Wiersig J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 2011, 84, 063828.

12

Huang, Y. Z.; Chen, Q.; Guo, W. H.; Lu, Q. Y.; Yu, L. J. Mode characteristics for equilateral triangle optical resonators. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 59–65.

13

Tian, Z. A.; Li, S. L.; Kiravittaya, S.; Xu, B. R.; Tang, S. W.; Zhen, H. L.; Lu, W.; Mei, Y. F. Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity. Nano Lett. 2018, 18, 8035–8040.

14

Chin, H. S.; Cheong, K. Y.; Razak, K. A. Review on oxides of antimony nanoparticles: Synthesis, properties, and applications. J. Mater. Sci. 2010, 45, 5993–6008.

15

Divya, K. V.; Abraham, K. E. Multifunctional transition metal doped Sb2O3 thin film with high near-IR transmittance, anti-reflectance and UV blocking features. Appl. Surf. Sci. 2019, 493, 1115–1124.

16

Sahoo, N. K.; Apparao, K. V. S. R. Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications. Appl. Phys. A 1996, 63, 195–202.

17

Sun, G. Z.; Li, B.; Wang, S. F.; Zhang, Z. W.; Li, J.; Duan, X. D.; Duan, X. F. Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Res. 2019, 12, 2781–2787.

18

Sui, Z. L.; Hu, S. H.; Chen, H.; Gao, C.; Su, H.; Rahman, A.; Dai, R. C.; Wang, Z. P.; Zheng, X. X.; Zhang, Z. M. Laser effects on phase transition for cubic Sb2O3 microcrystals under high pressure. J. Mater. Chem. C 2017, 5, 5451–5457.

19

Tigau, N.; Ciupina, V.; Prodan, G. The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. J. Cryst. Growth 2005, 277, 529–535.

20

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

21

Kozawa, D.; Kumar, R.; Carvalho, A.; Amara, K. K.; Zhao, W. J.; Wang, S. F.; Toh, M.; Ribeiro, R. M.; Neto, A. H. C.; Matsuda, K. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 2014, 5, 4543.

22

Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

23

Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

24

Zheng, W.; Feng, W.; Zhang, X.; Chen, X. S.; Liu, G. B.; Qiu, Y. F.; Hasan, T.; Tan, P. H.; Hu, P. A. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654.

25

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840.

26

Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

27

Ying, H. T.; Li, X.; Wang, H. M.; Wang, Y. R.; Hu, X.; Zhang, J.; Zhang X. F.; Shi, Y. Q.; Xu, M. X.; Zhang, Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv. Opt. Mater. 2020, 8, 2000430.

28

Zhuo, R. R.; Wu, D.; Wang, Y. G.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982–10986.

29

Chang, K. E.; Yoo, T. J.; Kim, C.; Kim, Y. J.; Lee, S. K.; Kim, S. Y.; Heo, S.; Kwon, M. G.; Lee, B. H. Gate-controlled graphene-silicon Schottky junction photodetector. Small 2018, 14, 1801182.

30

Guo, D. Y.; Liu, H.; Li, P. G.; Wu, Z. P.; Wang, S. L.; Cui, C.; Li, C. R.; Tang, W. H. Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl. Mater. Interfaces 2017, 9, 1619–1628.

31

Islam, A.; Lee, J.; Feng, P. X. L. Atomic layer GaSe/MoS2 van der Waals heterostructure photodiodes with low noise and large dynamic range. ACS Photonics 2018, 5, 2693–2700.

32

Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669–674.

33

Liu, X.; Sun, G. Z.; Chen, P.; Liu, J. C.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X.; Dang, W. Q. et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res. 2019, 12, 339–344.

File
12274_2021_4033_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 October 2021
Revised: 25 November 2021
Accepted: 30 November 2021
Published: 14 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51732010, 51972280, and 51801175), and Natural Science Foundation of Hebei Province (No. E2019203233).

Return