Journal Home > Volume 15 , Issue 6

Leveraging the unique physical properties, two-dimensional (2D) materials have circumvented the disadvantages of conventional epitaxial semiconductors and held great promise for potential optoelectronic applications. So far, two main detector architectures including photodiode based on a van der Waals P-N junction or Schottky junction and phototransistor based on individual 2D materials or hybrids have been well developed. However, a trade-off between responsivity and speed always exists in those technologies thus hindering the overall performance improvement. Here, we propose a new device concept by sandwiching the 2D anisotropic semimetal between p-type and n-type semiconductors in the out-of-plane direction, called PSN architecture, realizing the improvement of each parameter including broad spectral coverage, fast speed, high sensitivity, power-free and polarization-sensitive. We stack the p-type 2H-MoTe2, Weyl semimetal 1T-MoTe2 and n-type SnSe2 layer-by-layer constructing vertical sandwich structure where the top and bottom layers contribute to the internal built-in electric field, the intermediate layer can facilitate the exciton dissociation and act as infrared polarized light sensitizers. As a result, this PSN device exhibits broadband photo-response from 405 to 1,550 nm without external bias supply. At optical communication band (1,310 nm), operating at self-driven mode and room temperature, the responsivity and detectivity can reach up to 64.2 mA·W–1 and 2.2×1011 Jones, respectively, along with fast speed on the order of millisecond. Moreover, the device simultaneously exhibits exceptional detection capability for infrared polarized light, demonstrating the anisotropic photocurrent ratio of 1.55 at 1,310 nm and 2.02 at 1,550 nm, which is attributed to the strong in-plane optical anisotropy of middle 1T-MoTe2 layer. This work develops a new photodetector scheme with novel PSN architecture toward broadband, self-power, polarized light sensing and imaging modules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2

Show Author's information Yiming Sun1Jingxian Xiong1Xuming Wu2Wei Gao1Nengjie Huo1( )Jingbo Li1( )
Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China

Abstract

Leveraging the unique physical properties, two-dimensional (2D) materials have circumvented the disadvantages of conventional epitaxial semiconductors and held great promise for potential optoelectronic applications. So far, two main detector architectures including photodiode based on a van der Waals P-N junction or Schottky junction and phototransistor based on individual 2D materials or hybrids have been well developed. However, a trade-off between responsivity and speed always exists in those technologies thus hindering the overall performance improvement. Here, we propose a new device concept by sandwiching the 2D anisotropic semimetal between p-type and n-type semiconductors in the out-of-plane direction, called PSN architecture, realizing the improvement of each parameter including broad spectral coverage, fast speed, high sensitivity, power-free and polarization-sensitive. We stack the p-type 2H-MoTe2, Weyl semimetal 1T-MoTe2 and n-type SnSe2 layer-by-layer constructing vertical sandwich structure where the top and bottom layers contribute to the internal built-in electric field, the intermediate layer can facilitate the exciton dissociation and act as infrared polarized light sensitizers. As a result, this PSN device exhibits broadband photo-response from 405 to 1,550 nm without external bias supply. At optical communication band (1,310 nm), operating at self-driven mode and room temperature, the responsivity and detectivity can reach up to 64.2 mA·W–1 and 2.2×1011 Jones, respectively, along with fast speed on the order of millisecond. Moreover, the device simultaneously exhibits exceptional detection capability for infrared polarized light, demonstrating the anisotropic photocurrent ratio of 1.55 at 1,310 nm and 2.02 at 1,550 nm, which is attributed to the strong in-plane optical anisotropy of middle 1T-MoTe2 layer. This work develops a new photodetector scheme with novel PSN architecture toward broadband, self-power, polarized light sensing and imaging modules.

Keywords: self-powered, van der Waals heterojunction, broadband photodetector, PSN architecture

References(54)

1

Krapf, D.; Adoram, B.; Shappir, J.; Sa’ar, A.; Thomas, S. G.; Liu, J. L.; Wang, K. L. Infrared multispectral detection using Si/SixGe1–x quantum well infrared photodetectors. Appl. Phys. Lett. 2001, 78, 495–497.

2
Zhang, F. L.; Zhang, X. T.; Li, Z. Y.; Yi, R. X.; Li, Z.; Wang, N. Y.; Xu, X. X.; Azimi, Z.; Li, L.; Lysevych, M. et al. A new strategy for selective area growth of highly uniform InGaAs/InP multiple quantum well nanowire arrays for optoelectronic device applications. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202103057.
3
Velicu, S.; Grein, C. H.; Emelie, P. Y.; Itsuno, A.; Phillips, J. D.; Wijewarnasuriya, P. Non-cryogenic operation of hgCdTe infrared detectors. In Proceedings of SPIE 7608, Quantum Sensing and Nanophotonic Devices VII, San Francisco, USA, 2010.
4

Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.

5

Zhong, M. Z.; Meng, H. T.; Ren, Z. H.; Huang, L.; Yang, J. H.; Li, B.; Xia, Q. L.; Wang, X. T.; Wei, Z. M.; He, J. Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. Nanoscale 2021, 13, 10579–10586.

6

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

7

Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.

8

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

9

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 pn homojunction. Nat. Commun. 2017, 8, 572.

10

Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Xu, J. L.; Teng, C. J.; Dai, R. X.; Yang, P.; Li, Z. X.; Li, W. W. et al. Novel transfer behaviors in 2D MoS2/WSe2 heterotransistor and its applications in visible-near infrared photodetection. Adv. Electron. Mater. 2017, 3, 1600502.

11

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

12

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

13

Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, M. A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

14

Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

15

Wang, Q. S.; Zheng, J. C.; He, Y.; Cao, J.; Liu, X.; Wang, M. Y.; Ma, J. C.; Lai, J. W.; Lu, H.; Jia, S. et al. Robust edge photocurrent response on layered type II weyl semimetal WTe2. Nat. Commun. 2019, 10, 5736.

16

Lai, J. W.; Liu, Y. N.; Ma, J. C.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J. H.; Sun, D. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II weyl semimetal candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061.

17

Xin, Y.; Wang, X. X.; Chen, Z.; Weller, D.; Wang, Y. Y.; Shi, L. J.; Ma, X.; Ding, C. J.; Li, W.; Guo, S. et al. Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15406–15413.

18

Tang, Y. X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y.; Wei, K.; Cheng, X.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

19

Jia, C.; Wu, D.; Wu, E. P.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Xu, T. T.; Huang, X. W.; Tian, Y. T.; Li, X. J. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C 2019, 7, 3817–3821.

20

Wang, X. J.; Shang, J.; Zhu, M. J.; Zhou, X.; Hao, R.; Sun, L. N.; Xu, H.; Zheng, J. B.; Lei, X. F.; Li, C. et al. Controlled growth of large-scale uniform 1T' MoTe2 crystals with tunable thickness and their photodetector applications. Nanoscale Horiz. 2020, 5, 954–959.

21

Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

22

Liu, M.; Zhang, J. J.; Xu, J.; Hu, B. F.; Sun, K.; Yang, Y.; Wang, J.; Du, B. L.; Zhang, H. F, The crystallization, thermodynamic and thermoelectric properties of vast off-stoichiometric Sn-Se crystals. J. Mater. Chem. C 2020, 8, 6422–6434.

23

Gao, W.; Zheng, Z. Q.; Huang, L.; Yao, J. D.; Zhao, Y.; Xiao, Y.; Li, J. B. Self-powered SnS1-xSex alloy/Silicon heterojunction photodetectors with high sensitivity in a wide spectral range. ACS Appl. Mater. Interfaces 2019, 11, 40222–40231.

24

Xu, X. L.; Han, B.; Liu, S.; Yang, S. Q.; Jia, X. H.; Xu, W. J.; Gao, P.; Ye, Y.; Dai, L. Atomic-precision repair of a few-layer 2H-MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv. Mater. 2020, 32, 2000236.

25

Zhou, L.; Huang, S. X.; Tatsumi, Y.; Wu, L. J.; Guo, H. H.; Bie, Y. Q.; Ueno, K.; Yang, T.; Zhu, Y. M.; Kong, J. et al. Sensitive phonon-based probe for structure identification of 1T' MoTe2. J. Am. Chem. Soc. 2017, 139, 8396–8399.

26

Song, W. D.; Chen, J. X.; Li, Z. L.; Fang, X. S. Self-powered Mxene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 2021, 33, 2101059.

27

Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

28

Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

29

Han, L. X.; Yang, M. M.; Wen, P. T.; Gao, W.; Huo, N. J.; Li, J. B. A high performance self-powered photodetector based on a 1D Te–2D WS2 mixed-dimensional heterostructure. Nanoscale Adv. 2021, 3, 2657–2665.

30

Shang, H. M.; Chen, H. Y.; Dai, M. L.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572.

31

Tan, C. Y.; Wang, H. H.; Zhu, X. D.; Gao, W. S.; Li, H.; Chen, J. W.; Li, G.; Chen, L. J.; Xu, J. M.; Hu, X. Z. et al. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942.

32

Lu, J. T.; Zheng, Z. Q.; Yao, J. Q.; Gao, W.; Xiao, Y.; Zhang, M. L.; Li, J. B. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale 2020, 12, 7196–7205.

33

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

34

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

35

Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

36

Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

37

Wu, W. H.; Zhang, Q.; Zhou, X.; Li, L.; Su, J. W.; Wang, F. K.; Zhai, T. Y. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45–53.

38

Ahn, J.; Kang, J. H.; Kyhm, J.; Choi, H. T.; Kim, M.; Ahn, D. H.; Kim, D. Y.; Ahn, I. H.; Park, J. B.; Park, S. et al. Self-powered visible-invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes. ACS Appl. Mater. Interfaces 2020, 12, 10858–10866.

39

Yu, M. M.; Gao, F.; Hu, Y. X.; Wang, L. F.; Hu, P. G.; Feng, W. Tunable electronic properties of multilayer InSe by alloy engineering for high performance self-powered photodetector. J. Colloid Interface Sci. 2020, 565, 239–244.

40

Zhang, Z. X.; Zeng, L. H.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.

41

Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

42

Tang, Y. C.; Wang, Z.; Wang, P.; Wu, F.; Wang, Y. M.; Chen, Y. F.; Wang, H. L.; Peng, M.; Shan, C. X.; Zhu, Z. H. et al. WSe2 photovoltaic device based on intramolecular p-n junction. Small 2019, 15, 1805545.

43

Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.

44

Xie, Y.; Wu, E. X.; Zhang, J.; Hu, X. D.; Zhang, D. H.; Liu, J. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 14215–14221.

45

Wu, E. X.; Xie, Y.; Liu, Q. Z.; Hu, X. D.; Liu, J.; Zhang, D. H.; Zhou, C. W. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 2019, 13, 5430–5438.

46

Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Jiang, C.; He, J. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 2016, 26, 5499–5506.

47

Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett 2014, 14, 5846–5852.

48

Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

49

Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733–10740.

50

Yan, F. G.; Zhao, L. X.; Patanè, A.; Hu, P. G.; Wei, X.; Luo, W. G.; Zhang, D.; Lv, Q. S.; Feng, Q.; Shen, C. et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 2017, 28, 27LT01.

51

Feng, W.; Jin, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M. et al. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p-n heterojunction. 2D Mater. 2018, 5, 25008.

52

Zhao, S.; Wu, J.; Jin, K.; Ding, H.; Li, T.; Wu, C.; Pan, N.; Wang, X. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

53

Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.

54

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

File
12274_2021_4008_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 October 2021
Revised: 12 November 2021
Accepted: 21 November 2021
Published: 14 December 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904108 and 62004071), the China Postdoctoral Science Foundation (No. 2020M672680), and the “The Pearl River Talent Recruitment Program” (No. 2019ZT08X639). X. M. W. thanks the support of Natural Science Foundation of Guangdong Province in China (Nos. 2019A1515011132 and 2017A030313022).

Return