AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nano-CsxWO3: Ultra-broadband nonlinear optical modulator for near-infrared and mid-infrared ultrafast fiber lasers generation

Nan Li1( )Heng Jia2Ming Guo1Wenying Zhang1Ji Wang3Lijun Song1( )
Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun 130052, China
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Peng Cheng Laboratory, No. 2, Xingke 1st Street, Shenzhen 518000, China
Show Author Information

Graphical Abstract

CsxWO3 nanorods (NRs) as a novel ultra-broadband nonlinear optical modulator were successfully developed for ultrafast fiber lasers in three key wavelength bands from near-infrared (NIR) to mid-infrared (MIR) region.

Abstract

Saturable absorbers (SAs) covering wavelengths from near-infrared (NIR) to mid-infrared (MIR) band are required for mode-locking and Q-switching lasers in muti-band wavelengths. Here, broadband nonlinear optical property was discovered in CsxWO3 nanorods (NRs), which as a novel non-stoichiometric SA for realizing ultrafast fiber lasers is first demonstrated. The CsxWO3 NRs based SA exhibited good mode-locking ability in three key wavelengths from NIR to MIR region, which is a key advantage over the most reported broadband SAs. The given CsxWO3 NRs showed a broadband optical absorption from 800 to 3,200 nm, and excellent SA properties at 1-μm, 1.5-μm, and 2-μm optical bands. Employing such SA, the ultrashort pulse lasers with a pulse duration/repetition rate of 530 fs/37.42 MHz at 1,567 nm and 5.6 ps/41.50 MHz at 1,965 nm from Er- and Tm-doped fiber lasers (TDFL) were realized separately. In addition, a stable mode locked operation at 1,030 nm with a repetition rate of 48.80 MHz was also achieved from Yb-doped fiber laser (YDFL). This work not only offers a new and reliable broadband mode locker for ultrafast laser generation, but also broadens the application of CsxWO3 materials in the field of nonlinear fiber optics.

Electronic Supplementary Material

Download File(s)
12274_2021_4000_MOESM1_ESM.pdf (976 KB)

References

1

Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

2

Oktem, B.; Ülgüdür, C.; Ilday, F. Ö. Soliton-similariton fibre laser. Nat. Photonics 2010, 4, 307–311.

3

Coffey, V. Ultrafast and ultrashort: Some recent advances in pulsed lasers. Opt. Photonics News 2014, 25, 28–35.

4

Fermann, M. E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874.

5

Fu, W.; Wright, L. G.; Sidorenko, P.; Backus, S.; Wise, F. W. Several new directions for ultrafast fiber lasers [Invited]. Opt. Express 2018, 26, 9432–9463.

6

Schaffer, C. B.; Brodeur, A.; García, J. F.; Mazur, E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 2001, 26, 93–95.

7

Sun, Z. P.; Hasan, T.; Wang, F. Q.; Rozhin, A. G.; White, I. H.; Ferrari, A. C. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res. 2010, 3, 404–411.

8

Li, X. H.; Wang, Y. G.; Wang, Y. S.; Zhao, W.; Yu, X. C.; Sun, Z. P.; Cheng, X. P.; Yu, X.; Zhang, Y.; Wang, Q. J. Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. Opt. Express 2014, 22, 17227–17235.

9

Jiang, T.; Xu, Y.; Tian, Q. J.; Liu, L.; Kang, Z.; Yang, R. Y.; Qin, G. S.; Qin, W. P. Passively Q-switching induced by gold nanocrystals. Appl. Phys. Lett. 2012, 101, 151122.

10

Kang, Z.; Xu, Y.; Zhang, L.; Jia, Z. X.; Liu, L.; Zhao, D.; Feng, Y.; Qin, G. S.; Qin, W. P. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl. Phys. Lett. 2013, 103, 041105.

11

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

12

Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

13

Sotor, J.; Sobon, G.; Abramski, K. M. Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Opt. Express 2014, 22, 13244–13249.

14

Liu, H.; Zheng, X. W.; Liu, M.; Zhao, N.; Luo, A. P.; Luo, Z. C.; Xu, W. C.; Zhang, H.; Zhao, C. J.; Wen, S. C. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 2014, 22, 6868–6873.

15

Luo, Z. C.; Liu, M.; Liu, H.; Zheng, X. W.; Luo, A. P.; Zhao, C. J.; Zhang, H., Wen, S. C.; Xu, W. C. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 2013, 38, 5212–5215.

16

Khazaeinezhad, R.; Kassani, S. H.; Jeong, H.; Park, K. J.; Kim, B. Y.; Yeom, D. I.; Oh, K. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photonics Technol. Lett. 2015, 27, 1581–1584.

17

Luo, Z. Q.; Li, Y. Y.; Zhong, M.; Huang, Y. Z.; Wan, X. J.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Res. 2015, 3, A79–A86.

18

Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.

19

Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260.

20

Li, J. F.; Luo, H. Y.; Zhai, B.; Lu, R. G.; Guo, Z. N.; Zhang, H.; Liu, Y. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 2016, 6, 30361.

21

Qin, Z. P.; Hai, T.; Xie, G. Q.; Ma, J. G.; Yuan, P.; Qian, L. J.; Li, L.; Zhao, L. M.; Shen, D. Y. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3. 5 µm wavelength. Opt. Express 2018, 26, 8224–8231.

22

Wu, L. M.; Huang, W. C.; Wang, Y. Z.; Zhao, J. L.; Ma, D. T.; Xiang, Y. J.; Li, J. Q.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.

23

Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.

24

Shi, Y. H.; Long, H.; Liu, S. X.; Tsang, Y. H.; Wen, Q. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers. J. Mater. Chem. C 2018, 6, 12638–12642.

25

Ming, N.; Tao, S. N.; Yang, W. Q.; Chen, Q. Y.; Sun, R. Y.; Wang, C.; Wang, S. Y.; Man, B. Y.; Zhang, H. N. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt. Express 2018, 26, 9017–9026.

26

Wei, K. H.; Fan, S. H.; Chen, Q. G; Lai, X. M. Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber. Opt. Express 2017, 25, 24901–24906.

27

Wang, H. S.; Zhao, F. Y.; Yan, Z. J.; Hu, X. H.; Zhou, K. M.; Zhang, T.; Zhang, W.; Wang, Y. S.; Zhao, W.; Zhang, L. et al. Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser. Opt. Express 2019, 27, 15693–15700.

28

Jhon, Y. I.; Lee, J.; Seo, M.; Lee, J. H.; Jhon, Y. M. Van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorber. Adv. Opt. Mater. 2019, 7, 1801745.

29

Jiang, X. T.; Zhang, L. J.; Liu, S. X.; Zhang, Y. Y.; He, Z. L.; Li, W. J.; Zhang, F.; Shi, Y. H.; Lü, W.; Li, Y. et al. Ultrathin metal-organic framework: An emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 2018, 6, 1800561.

30

Hong, S. J.; Lédée, F.; Park, J.; Song, S.; Lee, H.; Lee, Y. S.; Kim, B.; Yeom, D. I.; Deleporte, E.; Oh, K. Mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C- and L-bands using thin film of 2D perovskite crystallites. Laser Photonics Rev. 2018, 12, 1800118.

31

Hui, Z. Q.; Xu, W. X.; Li, X. H.; Guo, P. L.; Zhang, Y.; Liu, J. S. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale 2019, 11, 6045–6051.

32

Li, N.; Jia, H.; Guo, M.; Zhang, J.; Zhang, W. Y.; Guo, Z. X.; Li, M. X.; Jia, Z. X.; Qin, G. S. Broadband Fe3O4 nanoparticles saturable absorber for Q-switched fiber lasers. Opt. Fiber Technol. 2021, 61, 102421.

33

Yang, J.; Hu, J. Y.; Luo, H. Y.; Li, J. F.; Liu, J. S.; Li, X. H.; Liu, Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm. Photonics Res. 2020, 8, 70–77.

34

Lee, J.; Kim, Y.; Lee, K.; Lee, J. H. Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber. Photonics Res. 2018, 6, C36–C43.

35

He, J. S.; Tao, L. L.; Zhang, H.; Zhou, B.; Li, J. B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593.

36

Martinez, A.; Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845.

37

Liu, J. S.; Li, X. H.; Guo, Y. X.; Qyyum, A.; Shi, Z. J.; Feng, T. C.; Zhang, Y.; Jiang, C. X.; Liu, X. F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1902811.

38

Feng, J. J; Li, X. H.; Shi, Z. J.; Zheng, C.; Li, X. W.; Leng, D. Y.; Wang, Y. M.; Liu, J.; Zhu, L. J. 2D ductile transition metal chalcogenides (TMCs): Novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater. 2020, 8, 1901762.

39

Guo, P. L.; Li, X. H.; Feng, T. C.; Zhang, Y.; Xu, W. X. Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser. ACS Appl. Mater. Interfaces 2020, 12, 31757–31763.

40

Feng, J. J.; Li, X. H.; Zhu, G. Q.; Wang, Q. J. Emerging high-performance SnS/CdS nanoflower heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces 2020, 12, 43098–43105.

41

Zhang, Y.; Li, X. H.; Qyyum, A.; Feng, T. C.; Guo, P. L.; Jiang, J.; Zheng, H. R. PbS nanoparticles for ultrashort pulse generation in optical communication region. Part. Part. Syst. Charact. 2018, 35, 1800341.

42

Zheng, J. Y.; Haider, Z.; Van, T. K.; Pawar, A. U.; Kang, M. J.; Kim, C. W.; Kang, Y. S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093.

43

Guo, W.; Guo, C. S.; Zheng, N. N.; Sun, T. D.; Liu, S. Q. CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment. Adv. Mater. 2017, 29, 1604157.

44

Wu, C. M.; Naseem, S.; Chou, M. H.; Wang, J. H.; Jian, Y. Q. Recent advances in tungsten-oxide-based materials and their applications. Front. Mater. 2019, 6, 49.

45

Liu, G. H.; Kong, F. D.; Xu, J.; Li, R. X. Novel synthesis of 0D, 1D and 2D nano-CsxWO3 and their tunable optical-thermal response performance. J. Mater. Chem. C 2020, 8, 10342–10351.

46

Li, G. L.; Guo, C. S.; Yan, M.; Liu, S. Q. CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl. Catal. B Environ. 2016, 183, 142–148.

47

Liu, J. X.; Shi, F.; Dong, X. L.; Liu, S. H.; Fan, C. Y.; Yin, S.; Sato, T. Morphology and phase controlled synthesis of CsxWO3 powders by solvothermal method and their optical properties. Powder Technol. 2015, 270, 329–336.

48

Guo, C. S.; Yin, S.; Zhang, P. L.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J. Mater. Chem. 2010, 20, 8227–8229.

49

Li, X. H.; Tang, Y. L.; Yan, Z. Y.; Wang, Y.; Meng, B.; Liang, G. Z.; Sun, H. D.; Yu, X.; Zhang, Y.; Cheng, X. P. et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J. Sel. Top. Quant. Electron. 2014, 20, 1101107.

50

Lau, K. Y.; Zulkifli, M. Z. 1. 56 µm and 1.93 µm synchronized mode-locked fiber laser with graphene saturable absorber. Infrared Phys. Technol. 2021, 112, 103606.

51

Li, Y.; He, Y. L.; Cai, Y.; Chen, S. Q.; Liu, J.; Chen, Y.; Jiang, X. Y. Black phosphorus: Broadband nonlinear optical absorption and application. Laser Phys. Lett. 2018, 15, 025301.

52

Kivistö, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D. P.; Nasibulin, A. G.; Kauppinen, E. I.; Härkönen, A.; Okhotnikov, O. G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363.

53

Wang, F.; Jing, Y.; Kang, Z.; Zhou, L. B.; Li, Z. R.; Liu, M. Y.; Wang, T.; Yao, C. F.; Chen, H. B.; Qin, W. P. et al. Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation. Adv. Opt. Mater. 2018, 6, 1800606.

54

Mao, D.; Wang, Y. D.; Ma, C. J.; Han, L.; Jiang, B. Q.; Gan, X. T.; Hua, S. J.; Zhang, W. D.; Mei, T.; Zhao, J. L. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965.

55

Haris, H.; Harun, S. W.; Muhammad, A. R.; Anyi, C. L.; Tan, S. J.; Ahmad, F.; Nor, R. M.; Zulkepely, N. R.; Arof, H. Passively Q-switched erbium-doped and ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber. Opt. Laser Technol. 2017, 88, 121–127.

56

Kang, Z.; Gao, X. J.; Zhang, L.; Feng, Y.; Qin, G. S.; Qin, W. P. Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber. Opt. Mater. Express 2015, 5, 794–801.

57

Chen, H. B.; Wang, F.; Qian, M. D.; Zhou, X.; Li, Z. R.; Cheng, T. L.; Qin, G. S. Semiconducting polymer dots as broadband saturable absorbers for Q-switched fiber lasers. J. Mater. Chem. C 2020, 8, 4919–4925.

58

Zhang, H. N.; Ma, P. F.; Zhu, M. X.; Zhang, W. F.; Wang, G. M.; Fu, S. G. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567.

59

Jhon, Y. I.; Koo, J.; Anasori, B.; Seo, M., Lee, J. H.; Gogotsi, Y.; Jhon, Y. M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29, 1702496.

60

Shi, Y. H.; Xu, N.; Wen, Q. Ti2CTx (T = O, OH or F) nanosheets as new broadband saturable absorber for ultrafast photonics. J. Lightwave Technol. 2020, 38, 1975–1980.

61

Zhang, L. F.; Liu, J. F.; Li, J. Z.; Wang, Z.; Wang, Y. W.; Ge, Y. Q.; Dong, W. L.; Xu, N.; He, T. C.; Zhang, H. et al. Site-Selective Bi2Te3–FeTe2 Heterostructure as a broadband saturable absorber for ultrafast photonics. Laser Photonics Rev. 2020, 14, 1900409.

Nano Research
Pages 4403-4410
Cite this article:
Li N, Jia H, Guo M, et al. Nano-CsxWO3: Ultra-broadband nonlinear optical modulator for near-infrared and mid-infrared ultrafast fiber lasers generation. Nano Research, 2022, 15(5): 4403-4410. https://doi.org/10.1007/s12274-021-4000-0
Topics:

931

Views

11

Crossref

12

Web of Science

13

Scopus

3

CSCD

Altmetrics

Received: 28 August 2021
Revised: 19 October 2021
Accepted: 16 November 2021
Published: 11 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return