Journal Home > Volume 15 , Issue 5

Unraveling the nature of complex condensed matter systems is of paramount importance in a variety of fields such as pharmacology and materials science. Here we report the synthesis, by the dynamic covalent chemistry (DCC), of a robust, continuous, and low-defect glassy covalent organic network (GCON). The direct imaging of the molecular structure clearly shows the amorphous nature of GCONs, which consists with the competing (nano) crystallite model, not Zachariasen continuous random networks (Z-CRN). Remarkably, the microscopic friction properties were measured on GCONs by atomic force microscopy (AFM), and the GCONs showed lower friction force in comparison with crystalline covalent organic frameworks (COFs).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction and nanotribological study of a glassy covalent organic network on surface

Show Author's information Guangyuan Feng1Qingqing Luo1Mengqi Li1Yaru Song1Yongtao Shen2( )Shengbin Lei1( )Wenping Hu1
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Abstract

Unraveling the nature of complex condensed matter systems is of paramount importance in a variety of fields such as pharmacology and materials science. Here we report the synthesis, by the dynamic covalent chemistry (DCC), of a robust, continuous, and low-defect glassy covalent organic network (GCON). The direct imaging of the molecular structure clearly shows the amorphous nature of GCONs, which consists with the competing (nano) crystallite model, not Zachariasen continuous random networks (Z-CRN). Remarkably, the microscopic friction properties were measured on GCONs by atomic force microscopy (AFM), and the GCONs showed lower friction force in comparison with crystalline covalent organic frameworks (COFs).

Keywords: atomic force microscopy, scanning tunneling microscopy, glassy covalent organic networks (GCON), nanotribological, competing (nano) crystallite model

References(44)

1

Levi, L.; Rechtsman, M.; Freedman, B.; Schwartz, T.; Manela, O.; Segev, M. Disorder-enhanced transport in photonic quasicrystals. Science 2011, 332, 1541–1544.

2

Ediger, M. D.; De Pablo, J.; Yu, L. Anisotropic vapor-deposited glasses: Hybrid organic solids. Acc. Chem. Res. 2019, 52, 407–414.

3

Shaw, B. K.; Hughes, A. R.; Ducamp, M.; Moss, S.; Debnath, A.; Sapnik, A. F.; Thorne, M. F.; McHugh, L. N.; Pugliese, A.; Keeble, D. S. et al. Melting of hybrid organic-inorganic perovskites. Nat. Chem. 2021, 13, 778–785.

4

Focassio, B.; Schleder, G. R.; Costa, M.; Fazzio, A.; Lewenkopf, C. Structural and electronic properties of realistic two-dimensional amorphous topological insulators. 2D Mater. 2021, 8, 025032.

5

Lichtenstein, L.; Büchner, C.; Yang, B.; Shaikhutdinov, S.; Heyde, M.; Sierka, M.; Włodarczyk, R.; Sauer, J.; Freund, H. J. The atomic structure of a metal-supported vitreous thin silica film. Angew. Chem., Int. Ed. 2012, 51, 404–407.

6

Kuhness, D.; Yang, H. J.; Klemm, H. W.; Prieto, M.; Peschel, G.; Fuhrich, A.; Menzel, D.; Schmidt, T.; Yu, X.; Shaikhutdinov, S. et al. A two-dimensional ‘Zigzag’ silica polymorph on a metal support. J. Am. Chem. Soc. 2018, 140, 6164–6168.

7

Lewandowski, A. L.; Tosoni, S.; Gura, L.; Schlexer, P.; Marschalik, P.; Schneider, W. D.; Heyde, M.; Pacchioni, G.; Freund, H. J. From crystalline to amorphous Germania bilayer films at the atomic scale: Preparation and characterization. Angew. Chem., Int. Ed. 2019, 58, 10903–10908.

8

Lewandowski, A. L.; Schlexer, P.; Büchner, C.; Davis, E. M.; Burrall, H.; Burson, K. M.; Schneider, W. D.; Heyde, M.; Pacchioni, G.; Freund, H. J. Atomic structure of a metal-supported two-dimensional Germania film. Phys. Rev. B 2018, 97, 115406.

9

Lewandowski, A. L.; Schlexer, P.; Tosoni, S.; Gura, L.; Marschalik, P.; Büchner, C.; Burrall, H.; Burson, K. M.; Schneider, W. D.; Pacchioni, G. et al. Determination of silica and Germania film network structures on Ru(0001) at the atomic scale. J. Phys. Chem. C 2019, 123, 7889–7897.

10

Toh, C. T.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

11

Yang, T.; Zhao, Y. L.; Li, W. P.; Yu, C. Y.; Luan, J. H.; Lin, D. Y.; Fan, L.; Jiao, Z. B.; Liu, W. H.; Liu, X. J. et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 2020, 369, 427–432.

12

Otero, R.; Lukas, M. Kelly, R. E. A.; Xu, W.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Elementary structural motifs in a random network of cytosine adsorbed on a Gold(111) surface. Science 2008, 319, 312–315.

13

Blunt, M. O.; Russell, J. C.; Del Carmen Giménez-López, M.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random tiling and topological defects in a two-dimensional molecular network. Science 2008, 322, 1077–1081.

14

Garrahan, J. P.; Stannard, A.; Blunt, M. O.; Beton, P. H. Molecular random tilings as glasses. Proc. Natl. Acad. Sci. USA 2009, 106, 15209–15213.

15

Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem., Int. Ed. 2008, 47, 4406–4410.

16

Marschall, M.; Reichert, J.; Weber-Bargioni, A.; Seufert, K.; Auwärter, W.; Klyatskaya, S.; Zoppellaro, G.; Ruben, M.; Barth, J. V. Random two-dimensional string networks based on divergent coordination assembly. Nat. Chem. 2010, 2, 131–137.

17

Stannard, A.; Russell, J. C.; Blunt, M. O.; Salesiotis, C.; Del Carmen Giménez-López, M.; Taleb, N.; Schröder, M.; Champness, N. R.; Garrahan, J. P.; Beton, P. H. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nat. Chem. 2012, 4, 112–117.

18

Alexa, P.; Oligschleger, C.; Gröger, P.; Morchutt, C.; Vyas, V.; Lotsch, B. V.; Schön, J. C.; Gutzler, R.; Kern, K. Short-range structural correlations in amorphous 2D polymers. ChemPhysChem 2019, 20, 2340–2347.

19

Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1, 3, 5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 4456–4458.

20

Ecija, D.; Vijayaraghavan, S.; Auwärter, W.; Joshi, S.; Seufert, K.; Aurisicchio, C.; Bonifazi, D.; Barth, J. V. Two-dimensional short-range disordered crystalline networks from flexible molecular modules. ACS Nano 2012, 6, 4258–4265.

21

Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid−vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

22

Dienstmaier, J. F.; Medina, D. D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W. M.; Lackinger, M. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 2012, 6, 7234–7242.

23

Xu, L. R.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S. B.; Liu, Z. F. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem., Int. Ed. 2014, 53, 9564–9568.

24

Ciesielski, A.; El Garah, M.; Haar, S.; Kovaříček, P.; Lehn, J. M.; Samorì, P. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. Nat. Chem. 2014, 6, 1017–1023.

25

Mo, Y. P.; Liu, X. H.; Wang, D. Concentration-directed polymorphic surface covalent organic frameworks: Rhombus, parallelogram, and kagome. ACS Nano 2017, 11, 11694–11700.

26

Cai, Z. F.; Zhan, G. L.; Daukiya, L.; Eyley, S.; Thielemans, W.; Severin, K.; De Feyter, S. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 11404–11408.

27

Zhan, G. L.; Cai, Z. F.; Martínez-Abadía, M.; Mateo-Alonso, A.; De Feyter, S. Real-time molecular-scale imaging of dynamic network switching between covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 5964–5968.

28

Chen, M. W. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90.

29

Ediger, M. D.; De Pablo, J.; Yu, L. Anisotropic vapor-deposited glasses: Hybrid organic solids. Acc. Chem. Res. 2019, 52, 407–414.

30

Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C. Y.; Brusso, J. L.; Dinca, L. E.; Vondráček, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F. et al. Synthesis and electronic structure of a two dimensional π-conjugated polythiophene. Chem. Sci. 2013, 4, 3263–3268.

31

Wu, X.; Han, Q. Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous. Comput. Mater. Sci. 2020, 184, 109938.

32

Wright, A. C. Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies? J. Non-Cryst. Solids 1994, 179, 84–115.

33

Wright, A. C. The great crystallite versus random network controversy: A personal perspective. Int. J. Appl. Glass Sci. 2014, 5, 31–56.

34

Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 1932, 54, 3841–3851.

35

Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425.

36

Treacy, M. M. J.; Borisenko, K. B. The local structure of amorphous silicon. Science 2012, 335, 950–953.

37

Yang, Y.; Zhou, J. H.; Zhu, F.; Yuan, Y. K.; Chang, D. J.; Kim, D. S.; Pham, M.; Rana, A.; Tian, X. Z.; Yao, Y. G. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 2021, 592, 60–64.

38
Since the heteropore mostly do not develop into perfect crystallite domains, we have not carried out the statistic on the surface coverage of heteropore networks.
39

Berman, D.; Deshmukh, S. A.; Sankaranarayanan, S. R. S.; Erdemir, A.; Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 2015, 348, 1118–1122.

40

Meng, Y. G.; Xu, J.; Jin, Z. M.; Prakash, B.; Hu, Y. Z. A review of recent advances in tribology. Friction 2020, 8, 221–300.

41

Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262.

42

Shi, H. Y.; Lu, X. C.; Liu, Y. H.; Song, J.; Deng, K.; Zeng, Q. D.; Wang, C. Nanotribological study of supramolecular template networks induced by hydrogen bonds and van der waals forces. ACS Nano 2018, 12, 8781–8790.

43

Tan, S. C.; Shi, H. Y.; Fu, L. L.; Ma, J.; Du, X.; Song, J.; Liu, Y. H.; Zeng, Q. D.; Xu, H. J.; Wan, J. H. Superlubricity of fullerene derivatives induced by host-guest assembly. ACS Appl. Mater. Interfaces 2020, 12, 18924–18933.

44

Ghorbal, A.; Brahim, A. B. Evaluation of nanotribological behavior of amorphous polystyrene: The macromolecular weight effect. Polym. Test. 2013, 32, 1174–1180.

File
12274_2021_3988_MOESM1_ESM.pdf (1,009.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2021
Revised: 21 October 2021
Accepted: 09 November 2021
Published: 15 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 52073208, 21872103, and 51633006) and the Ministry of Science and Technology of China (No. 2016YFB0401100).

Return