Journal Home > Volume 15 , Issue 5

Carbon nanotubes (CNTs) have attracted great attentions in the field of electronics, sensors, healthcare, and energy conversion. Such emerging applications have driven the carbon nanotube research in a rapid fashion. Indeed, the structure control over CNTs has inspired an intensive research vortex due to the high promises in electronic and optical device applications. Here, this in-depth review is anticipated to provide insights into the controllable synthesis and applications of high-quality CNTs. First, the general synthesis and post-purification of CNTs are briefly discussed. Then, the state-of-the-art electronic device applications are discussed, including field-effect transistors, gas sensors, DNA biosensors, and pressure gauges. Besides, the optical sensors are delivered based on the photoluminescence. In addition, energy applications of CNTs are discussed such as thermoelectric energy generators. Eventually, future opportunities are proposed for the Internet of Things (IoT) oriented sensors, data processing, and artificial intelligence.


menu
Abstract
Full text
Outline
About this article

Emerging Internet of Things driven carbon nanotubes-based devices

Show Author's information Shu Zhang19§Jinbo Pang( )Yufen LiFeng Yang2( )Thomas Gemming3Kai Wang5Xiao Wang6Songang Peng78Xiaoyan Liu1Bin Chang1Hong Liu14( )Weijia Zhou1Gianaurelio Cuniberti14151617( )Mark H. Rümmeli310111213
Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
Leibniz Institute for Solid State and Materials Research Dresden, P.O. Box 270116, Dresden D-01171, Germany
State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
School of Electrical Engineering, Qingdao University, Qingdao 266071, China
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany

§ Shu Zhang, Jinbo Pang, and Yufen Li contributed equally to this work.

Abstract

Carbon nanotubes (CNTs) have attracted great attentions in the field of electronics, sensors, healthcare, and energy conversion. Such emerging applications have driven the carbon nanotube research in a rapid fashion. Indeed, the structure control over CNTs has inspired an intensive research vortex due to the high promises in electronic and optical device applications. Here, this in-depth review is anticipated to provide insights into the controllable synthesis and applications of high-quality CNTs. First, the general synthesis and post-purification of CNTs are briefly discussed. Then, the state-of-the-art electronic device applications are discussed, including field-effect transistors, gas sensors, DNA biosensors, and pressure gauges. Besides, the optical sensors are delivered based on the photoluminescence. In addition, energy applications of CNTs are discussed such as thermoelectric energy generators. Eventually, future opportunities are proposed for the Internet of Things (IoT) oriented sensors, data processing, and artificial intelligence.

Keywords: artificial intelligence, Internet of Things, carbon nanotubes, sensors, electronics, electronic skins

References(383)

1

Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474–477.

2

Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.

3

Mann, D.; Kato, Y. K.; Kinkhabwala, A.; Pop, E.; Cao, J.; Wang, X. R.; Zhang, L.; Wang, Q.; Guo, J.; Dai, H. J. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 33–38.

4

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.

5

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.

6

Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841.

7

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

8

Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148–2150.

9

Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

10

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

11

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes.Nano Res. 2010, 3, 779–793.

12

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

13

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

14

Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605.

15

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

16

Sorgenfrei, S.; Chiu, C. Y.; Gonzalez, R. L. Jr.; Yu, Y. J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 2011, 6, 126–132.

17

Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.

18

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature 2000, 405, 769–772.

19

Shang, Y. Y.; He, X. D.; Li, Y. B.; Zhang, L. H.; Li, Z.; Ji, C. Y.; Shi, E. Z.; Li, P. X.; Zhu, K.; Peng, Q. Y. et al. Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 2012, 24, 2896–2900.

20

Li, Y. Carbon nanotube research in its 30th year. ACS Nano 2021, 15, 9197–9200.

21

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

22

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

23

Li, M. H.; Liu, X. Y.; Zhao, X. L.; Yang, F.; Wang, X.; Li, Y. Metallic catalysts for structure-controlled growth of single-walled carbon nanotubes. Top. Curr. Chem. 2017, 375, 29.

24

Liu, B. L.; Wu, F. Q.; Gui, H.; Zheng, M.; Zhou, C. W. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 2017, 11, 31–53.

25

Amara, H.; Bichara, C. Modeling the growth of single-wall carbon nanotubes. Top. Curr. Chem. 2017, 375, 55.

26

Zhang, R. F.; Zhang, Y. Y.; Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc Chem. Res. 2017, 50, 179–189.

27

Yang, F.; Wang, X.; Li, M. H.; Liu, X. Y.; Zhao, X. L.; Zhang, D. Q.; Zhang, Y.; Yang, J.; Li, Y. Templated synthesis of single-walled carbon nanotubes with specific structure. Acc Chem. Res. 2016, 49, 606–615.

28

Qian, L.; Xie, Y.; Zhang, S. C.; Zhang, J. Band engineering of carbon nanotubes for device applications. Matter 2020, 3, 664–695.

29

Qiu, L.; Ding, F. Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Acc Mater. Res. 2021, 2, 828–841.

30

Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508–1515.

31

Yang, X. S.; Zhao, X.; Liu, T. H.; Yang, F. Precise synthesis of carbon nanotubes and one-dimensional hybrids from templates. Chin. J. Chem. 2021, 39, 1726–1744.

32

Zhu, Z. X.; Bai, Y. X.; Wei, N.; Gao, J.; Sun, S. L.; Zhang, C. X.; Wei, F. Controlled growth of crossed ultralong carbon nanotubes by gas flow. Nano Res. 2020, 13, 1988–1995.

33

Liu, Z. F.; Jiao, L. Y.; Yao, Y. G.; Xian, X. J.; Zhang, J. Aligned, ultralong single-walled carbon nanotubes: From synthesis, sorting, to electronic devices. Adv. Mater. 2010, 22, 2285–2310.

34

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

35

Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

36

He, M. S.; Zhang, S. C.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684.

37

Zheng, M. Sorting carbon nanotubes. Top. Curr. Chem. 2017, 375, 13.

38

Lei, T.; Pochorovski, I.; Bao, Z. N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc Chem. Res. 2017, 50, 1096–1104.

39

Lyu, M.; Li, Y. Sorting of single-wall carbon nanotubes by aqueous two-phase systems. Sci. Sin. Chim. 2020, 50, 1619–1636.

40

Lefebvre, J.; Ding, J. F.; Li, Z.; Finnie, P.; Lopinski, G.; Malenfant, P. R. L. High-purity semiconducting single-walled carbon nanotubes: A key enabling material in emerging electronics. Acc Chem. Res. 2017, 50, 2479–2486.

41

Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8, 7292–7305.

42

Liang, L. Y.; Xie, W. Y.; Fang, S. X.; He, F.; Yin, B. H.; Tlili, C.; Wang, D. Q.; Qiu, S.; Li, Q. W. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. J. Mater. Chem. C 2017, 5, 11339–11368.

43

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

44

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

45

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

46

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

47

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

48

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

49

He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 2018, 17, 663–670.

50

Tunuguntla, R. H.; Henley, R. Y.; Yao, Y. C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792–796.

51

Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

52

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

53

Zhang, F.; Hou, P. X.; Liu, C.; Cheng, H. M. Epitaxial growth of single-wall carbon nanotubes. Carbon 2016, 102, 181–197.

54

Gao, W. L.; Kono, J. Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. Roy. Soc. Open Sci. 2019, 6, 181605.

55

Mak, K. F.; Sfeir, M. Y.; Misewich, J. A.; Heinz, T. F. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 14999–15004.

56

Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J. Carbon nanotube electronics. Proc. IEEE 2003, 91, 1772–1784.

57

Yao, F. R.; Tang, J. Y.; Wang, F.; Liu, K. H. Structure-property relations in individual carbon nanotubes [Invited]. J. Opt. Soc. Am. B 2016, 33, C102–C107.

58

Liu, C.; Ma, W.; Chen, M. L.; Ren, W. C.; Sun, D. M. A vertical silicon-graphene-germanium transistor. Nat. Commun. 2019, 10, 4873.

59

Gomulya, W.; Gao, J.; Loi, M. A. Conjugated polymer-wrapped carbon nanotubes: Physical properties and device applications. Eur. Phys. J. B 2013, 86, 404.

60

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

61

Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121.

62

Zhang, D. Q.; Yang, J.; Yang, F.; Li, R. M.; Li, M. H.; Ji, D.; Li, Y. (n, m) Assignments and quantification for single-walled carbon nanotubes on SiO2/Si substrates by resonant Raman spectroscopy. Nanoscale 2015, 7, 10719–10727.

63

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206.

64

Hu, Y. C.; Chen, S. C.; Cong, X.; Sun, S. D.; Wu, J. B.; Zhang, D. Q.; Yang, F.; Yang, J.; Tan, P. H.; Li, Y. Electronic Raman scattering in suspended semiconducting carbon nanotube. J. Phys. Chem. Lett. 2020, 11, 10497–10503.

65

Brohmann, M.; Berger, F. J.; Matthiesen, M.; Schießl, S. P.; Schneider, S.; Zaumseil, J. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 2019, 13, 7323–7332.

66

Li, X.; Yu, J. Y.; Li, G. X.; Liu, H.; Wang, A. L.; Yang, L. J.; Zhou, W. J.; Chu, B. L.; Liu, S. W. TiO2 nanodots anchored on nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles as photocatalysts with photo-enhanced catalytic activity towards the pollutant removal. J. Colloid Interface Sci. 2018, 526, 158–166.

67

Yu, J. Y.; Li, G. X.; Liu, H.; Zeng, L. L.; Zhao, L. L.; Jia, J.; Zhang, M. Y.; Zhou, W. J.; Liu, H.; Hu, Y. Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. 2019, 6, 1901458.

68

Yang, L. J.; Deng, Y. Q.; Zhang, X. F.; Liu, H.; Zhou, W. J. MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte. Nanoscale 2018, 10, 9268–9275.

69

Liu, F.; He, J. T.; Liu, X. Y.; Chen, Y. K.; Liu, Z.; Chen, D.; Liu, H.; Zhou, W. J. MoC nanoclusters anchored Ni@N-doped carbon nanotubes coated on carbon fiber as three-dimensional and multifunctional electrodes for flexible supercapacitor and self-heating device. Carbon Energy 2021, 3, 129–141.

70

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

71

Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M. Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 033407.

72

Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234.

73

Zhao, X.; Zhang, X. R.; Liu, Q. D.; Zhang, Z. Y.; Li, Y. Growth of single-walled carbon nanotubes on substrates using carbon monoxide as carbon source. Chem. Res. Chin. Univ. 2021, 37, 1125–1129.

74

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

75

Cui, R. L.; Zhao, X. L.; Li, R. M.; Liu, Y.; Luo, D.; Yang, F.; Li, Y. Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst. Sci. China Chem. 2017, 60, 516–520.

76

Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

77

Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

78

Peng, F.; Luo, D.; Sun, H.; Wang, J. Y.; Yang, F.; Li, R. M.; Yang, J.; Li, Y. Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors. Chin. Sci. Bull. 2013, 58, 433–439.

79

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

80

Kang, L. X.; Hu, Y.; Zhong, H.; Si, J.; Zhang, S. C.; Zhao, Q. C.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Res. 2015, 8, 3694–3703.

81

Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

82

Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

83

Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl. Acad. Sci. USA 2009, 106, 2506–2509.

84

Magnin, Y.; Amara, H.; Ducastelle, F.; Loiseau, A.; Bichara, C. Entropy-driven stability of chiral single-walled carbon nanotubes. Science 2018, 362, 212–215.

85

Yang, F.; Zhao, H. F.; Wang, W.; Liu, Q. D.; Liu, X.; Hu, Y. C.; Zhang, X. R.; Zhu, S.; He, D. S.; Xu, Y. Y. et al. Carbon-involved near-surface evolution of cobalt nanocatalysts: An in situ study. CCS Chem. 2021, 3, 154–167.

86

Rao, R. H.; Liptak, D.; Cherukuri, T.; Yakobson, B. I.; Maruyama, B. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 2012, 11, 213–216.

87

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 2013, 7, 6156–6161.

88

Si, J.; Zhong, D. L.; Xu, H. T.; Xiao, M. M.; Yu, C. X.; Zhang, Z. Y.; Peng, L. M. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors. ACS Nano 2018, 12, 627–634.

89

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

90

Zhao, M. Y.; Chen, Y. H.; Wang, K. X.; Zhang, Z. X.; Streit, J. K.; Fagan, J. A.; Tang, J. S.; Zheng, M.; Yang, C. Y.; Zhu, Z. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881.

91

Komatsu, N.; Nakamura, M.; Ghosh, S.; Kim, D.; Chen, H. Z.; Katagiri, A.; Yomogida, Y.; Gao, W. L.; Yanagi, K.; Kono, J. Groove-assisted global spontaneous alignment of carbon nanotubes in vacuum filtration. Nano Lett. 2020, 20, 2332–2338.

92

Zhu, M. G.; Si, J.; Zhang, Z. Y.; Peng, L. M. Aligning solution-derived carbon nanotube film with full surface coverage for high-performance electronics applications. Adv. Mater. 2018, 30, 1707068.

93

Zhu, Z. X.; Wei, N.; Xie, H. H.; Zhang, R. F.; Bai, Y. X.; Wang, Q.; Zhang, C. X.; Wang, S.; Peng, L. M.; Dai, L. M. et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2016, 2, e1601572.

94

Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

95

Hu, Y. F.; Peng, L. M.; Xiang, L.; Zhang, H. Flexible integrated circuits based on carbon nanotubes. Acc Mater. Res. 2020, 1, 88–99.

96

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

97

Yu, L. P.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016, 116, 13413–13453.

98

Ding, E. X.; Hussain, A.; Ahmad, S.; Zhang, Q.; Liao, Y. P.; Jiang, H.; Kauppinen, E. I. High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Res. 2020, 13, 112–120.

99

Hussain, A.; Liao, Y. P.; Zhang, Q.; Ding, E. X.; Laiho, P.; Ahmad, S.; Wei, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale 2018, 10, 9752–9759.

100

Liao, Y. P.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. Direct synthesis of colorful single-walled carbon nanotube thin films. J. Am. Chem. Soc. 2018, 140, 9797–9800.

101

Wei, N.; Tian, Y.; Liao, Y. P.; Komatsu, N.; Gao, W. L.; Lyuleeva-Husemann, A.; Zhang, Q.; Hussain, A.; Ding, E. X.; Yao, F. R. et al. Colors of single-wall carbon nanotubes. Adv. Mater. 2021, 33, 2006395.

102

Zhang, Q.; Nam, J. S.; Han, J. Y.; Datta, S.; Wei, N.; Ding, E. X.; Hussain, A.; Ahmad, S.; Skakalova, V.; Khan, A. T. et al. Large-diameter carbon nanotube transparent conductor overcoming performance-yield tradeoff. Adv. Funct. Mater. 2021, 2103397.

103

Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.

104

Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.

105

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

106

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

107

Yang, F.; Wang, X.; Si, J.; Zhao, X. L.; Qi, K.; Jin, C. H.; Zhang, Z. Y.; Li, M. H.; Zhang, D. Q.; Yang, J. et al. Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano 2017, 11, 186–193.

108

Yang, F.; Wang, X.; Zhang, D. Q.; Qi, K.; Yang, J.; Xu, Z.; Li, M. H.; Zhao, X. L.; Bai, X. D.; Li, Y. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts. J. Am. Chem. Soc. 2015, 137, 8688–8691.

109

Qian, L.; Xie, Y.; Yu, Y.; Wang, S. S.; Zhang, S. C.; Zhang, J. Growth of single-walled carbon nanotubes with controlled structure: Floating carbide solid catalysts. Angew. Chem., Int. Ed. 2020, 59, 10884–10887.

110

Xu, Z. W.; Qiu, L.; Ding, F. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth. Chem. Sci. 2018, 9, 3056–3061.

111

Artyukhov, V. I.; Penev, E. S.; Yakobson, B. I. Why nanotubes grow chiral. Nat. Commun. 2014, 5, 4892.

112

Yoshikawa, R.; Hisama, K.; Ukai, H.; Takagi, Y.; Inoue, T.; Chiashi, S.; Maruyama, S. Molecular dynamics of chirality definable growth of single-walled carbon nanotubes. ACS Nano 2019, 13, 6506–6512.

113

Bets, K. V.; Penev, E. S.; Yakobson, B. I. Janus segregation at the carbon nanotube-catalyst interface. ACS Nano 2019, 13, 8836–8841.

114

Page, A. J.; Saha, S.; Li, H. B.; Irle, S.; Morokuma, K. Quantum chemical simulation of carbon nanotube nucleation on Al2O3 catalysts via CH4 chemical vapor deposition. J. Am. Chem. Soc. 2015, 137, 9281–9288.

115

Qiu, L.; Ding, F. Contact-induced phase separation of alloy catalyst to promote carbon nanotube growth. Phys. Rev. Lett. 2019, 123, 256101.

116

Lin, P. A.; Gomez-Ballesteros, J. L.; Burgos, J. C.; Balbuena, P. B.; Natarajan, B.; Sharma, R. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. J. Catal. 2017, 349, 149–155.

117

Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

118

Feng, X. F.; Chee, S. W.; Sharma, R.; Liu, K.; Xie, X.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. In situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Res. 2011, 4, 767–779.

119

Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

120

Zhang, L. L.; He, M. S.; Hansen, T. W.; Kling, J.; Jiang, H.; Kauppinen, E. I.; Loiseau, A.; Wagner, J. B. Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 2017, 11, 4483–4493.

121

Yang, F.; Zhao, H. F.; Wang, X. W.; Liu, X.; Liu, Q. F.; Liu, X. Y.; Jin, C. H.; Wang, R. M.; Li, Y. Atomic scale stability of tungsten-cobalt intermetallic nanocrystals in reactive environment at high temperature. J. Am. Chem. Soc. 2019, 141, 5871–5879.

122

Yang, F.; Zhao, H. F.; Wang, W.; Wang, L.; Zhang, L.; Liu, T. H.; Sheng, J.; Zhu, S.; He, D. S.; Lin, L. L. et al. Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem. Sci. 2021, 12, 12651–12660.

123

Wang, Y.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Ma, R. X.; Wang, Y. Z.; Zhang, B. S.; Ding, F.; Liu, C.; Cheng, H. M. Precise identification of the active phase of cobalt catalyst for carbon nanotube growth by in situ transmission electron microscopy. ACS Nano 2020, 14, 16823–16831.

124

Zhang, X. F.; Yang, F.; Tian, D. L.; Zhao, H. F.; Wang, R. M.; Lau, W. M. Atomic scale evolution of graphitic shells growth via pyrolysis of cobalt phthalocyanine. Adv. Mater. Interfaces 2020, 7, 2001112.

125

Yomogida, Y.; Tanaka, T.; Zhang, M. F.; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 2016, 7, 12056.

126

Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 12899.

127

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

128

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.

129

Ao, G. Y.; Streit, J. K.; Fagan, J. A.; Zheng, M. Differentiating left- and right-handed carbon nanotubes by DNA. J. Am. Chem. Soc. 2016, 138, 16677–16685.

130

Waldrop, M. M. The chips are down for Moore’s law. Nature 2016, 530, 144–147.

131

Hook, T. B. Power and technology scaling into the 5 nm node with stacked nanosheets. Joule 2018, 2, 1–4.

132

Divakaruni, R.; Narayanan, V. (Keynote) Challenges of 10 nm and 7 nm CMOS for server and mobile applications. ECS Trans. 2016, 72, 3–14.

133

Brendler, L. H.; Zimpeck, A. L.; Meinhardt, C.; Reis, R. Multi-level design influences on robustness evaluation of 7 nm FinFET technology. IEEE Trans. Circuits Syst. I: Regul. Pap. 2020, 67, 553–564.

134

Kim, S. K. Line-edge roughness stochastics for 5-nm pattern formation in the extreme ultraviolet lithography. J. Nanosci. Nanotechnol. 2019, 19, 4657–4660.

135

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

136

Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

137

Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40–45.

138

Qiu, C. G.; Liu, F.; Xu, L.; Deng, B.; Xiao, M. M.; Si, J.; Lin, L.; Zhang, Z. Y.; Wang, J.; Guo, H. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 2018, 361, 387–392.

139

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

140

Peng, S. G.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Niu, J. B.; Zhu, C. Y.; Zhang, Y. H.; Yu, G. H. The effect of metal contact doping on the scaled graphene field effect transistor. Adv. Eng. Mater. 2021, 2100935.

141

Peng, S. A.; Jin, Z.; Ma, P.; Zhang, D. Y.; Shi, J. Y.; Niu, J. B.; Wang, X. Y.; Wang, S. Q.; Li, M.; Liu, X. Y. et al. The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 2015, 82, 500–505.

142

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Niu, J. B.; Huang, X. N.; Yao, Y.; Zhang, Y. H.; Yu, G. H. How do contact and channel contribute to the dirac points in graphene field-effect transistors? Adv. Electron. Mater. 2018, 4, 1800158.

143

Peng, S. A.; Jin, Z.; Ma, P.; Yu, G. H.; Shi, J. Y.; Zhang, D. Y.; Chen, J.; Liu, X. Y.; Ye, T. C. Heavily p-type doped chemical vapor deposition graphene field-effect transistor with current saturation. Appl. Phys. Lett. 2013, 103, 223505.

144

Peng, S. A.; Jin, Z.; Yao, Y.; Huang, X. N.; Zhang, D. Y.; Niu, J. B.; Shi, J. Y.; Zhang, Y. H.; Yu, G. H. Controllable p-to-n type conductance transition in top-gated graphene field effect transistor by interface trap engineering. Adv. Electron. Mater. 2020, 6, 2000496.

145

Peng, S. A.; Jin, Z.; Yao, Y.; Li, L.; Zhang, D. Y.; Shi, J. Y.; Huang, X. N.; Niu, J. B.; Zhang, Y. H.; Yu, G. H. Metal-contact-induced transition of electrical transport in monolayer MoS2: From thermally activated to variable-range hopping. Adv. Electron. Mater. 2019, 5, 1900042.

146

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Zhang, Y. H.; Yu, G. H. Evidence of electric field-tunable tunneling probability in graphene and metal contact. Nanoscale 2017, 9, 9520–9528.

147

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Mao, D. C.; Wang, S. Q.; Yu, G. H. Carrier-number-fluctuation induced ultralow 1/f noise level in top-gated graphene field effect transistor. ACS Appl. Mater. Interfaces 2017, 9, 6661–6665.

148

Peng, S. A.; Jin, Z.; Peng, M.; Zhang, D. Y.; Shi, J. Y.; Wang, X. Y.; Wang, S. Q.; Li, M.; Liu, X. Y.; Yu, G. H. Effect of source-gate spacing on direct current and radio frequency characteristic of graphene field effect transistor. Appl. Phys. Lett. 2015, 106, 033503.

149

Pitner, G.; Hills, G.; Llinas, J. P.; Persson, K. M.; Park, R.; Bokor, J.; Mitra, S.; Wong, H. S. P. Low-temperature side contact to carbon nanotube transistors: Resistance distributions down to 10 nm contact length. Nano Lett. 2019, 19, 1083–1089.

150

Lan, Y.; Yang, Y.; Wang, Y.; Wu, Y.; Cao, Z. Y.; Huo, S.; Jiang, L. H.; Guo, Y. C.; Wu, Y. Q.; Yan, B. et al. High-temperature-annealed flexible carbon nanotube network transistors for high-frequency wearable wireless electronics. ACS Appl. Mater. Interfaces 2020, 12, 26145–26152.

151

Wen, Y. T.; Ares, N.; Schupp, F. J.; Pei, T.; Briggs, G. A. D.; Laird, E. A. A coherent nanomechanical oscillator driven by single-electron tunnelling. Nat. Phys. 2020, 16, 75–82.

152

Khivrich, I.; Clerk, A. A.; Ilani, S. Nanomechanical pump-probe measurements of insulating electronic states in a carbon nanotube. Nat. Nanotechnol. 2019, 14, 161–167.

153

Liu, C.; Cheng, H. M. Controlled growth of semiconducting and metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 6690–6698.

154

Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

155

Ibrahim, I.; Kalbacova, J.; Engemaier, V.; Pang, J. B.; Rodriguez, R. D.; Grimm, D.; Gemming, T.; Zahn, D. R. T.; Schmidt, O. G.; Eckert, J. et al. Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 2015, 27, 5964–5973.

156

Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S. S.; Liu, B. L.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.

157

Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019–14026.

158

Qin, X. J.; Peng, F.; Yang, F.; He, X. H.; Huang, H. X.; Luo, D.; Yang, J.; Wang, S.; Liu, H. C.; Peng, L. M. et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett. 2014, 14, 512–517.

159

Hong, G.; Zhang, B.; Peng, B. H.; Zhang, J.; Choi, W. M.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Direct growth of semiconducting single-walled carbon nanotube array. J. Am. Chem. Soc. 2009, 131, 14642–14643.

160

Wang, J. T.; Jin, X.; Liu, Z. B.; Yu, G.; Ji, Q. Q.; Wei, H. M.; Zhang, J.; Zhang, K.; Li, D. Q.; Yuan, Z. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1, 326–331.

161

Zhu, Z. X.; Wei, N.; Cheng, W. J.; Shen, B. Y.; Sun, S. L.; Gao, J.; Wen, Q.; Zhang, R. F.; Xu, J.; Wang, Y. et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 2019, 10, 4467.

162

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

163

Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347–355.

164

Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.

165

LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

166

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

167

Park, H.; Afzali, A.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787–791.

168

Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865.

169

Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.

170

Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

171

Tang, J. S.; Cao, Q.; Tulevski, G.; Jenkins, K. A.; Nela, L.; Farmer, D. B.; Han, S. J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196.

172

Cardenas, J. A.; Upshaw, S.; Williams, N. X.; Catenacci, M. J.; Wiley, B. J.; Franklin, A. D. Impact of morphology on printed contact performance in carbon nanotube thin-film transistors. Adv. Funct. Mater. 2019, 29, 1805727.

173

Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G. H.; Zhu, C. X.; Li, S. C.; Beausoleil, R.; Wong, H. S. P.; Huang, T. C. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.

174

Feng, P.; Xu, W. W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J. W.; Cui, Z. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv. Funct. Mater. 2017, 27, 1604447.

175

Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

176

Kim, S.; Lee, Y.; Kim, H. D.; Choi, S. J. Parallel weight update protocol for a carbon nanotube synaptic transistor array for accelerating neuromorphic computing. Nanoscale 2020, 12, 2040–2046.

177

Thuruthel, T. G.; Shih, B.; Laschi, C.; Tolley, M. T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 2019, 4, eaav1488.

178

Sun, L. F.; Zhang, Y. S.; Hwang, G.; Jiang, J. B.; Kim, D.; Eshete, Y. A.; Zhao, R.; Yang, H. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett. 2018, 18, 3229–3234.

179

Sun, L. F.; Wang, W.; Yang, H. Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2020, 2, 1900167.

180

Bohaichuk, S. M.; Kumar, S.; Pitner, G.; McClellan, C. J.; Jeong, J.; Samant, M. G.; Wong, H. S. P.; Parkin, S. S. P.; Williams, R. S.; Pop, E. Fast spiking of a mott VO2-carbon nanotube composite device. Nano Lett. 2019, 19, 6751–6755.

181

Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Öhlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 2019, 10, 2676.

182

Wu, N.; Wan, S.; Su, S.; Huang, H. Z.; Dou, G. B.; Sun, L. T. Electrode materials for brain-machine interface: A review. InfoMat 2021, 3, 1174–1194.

183

Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepulveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

184

Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005, 307, 1942–1945.

185

Chen, J. L.; Lotfi, A.; Hesketh, P. J.; Kumar, S. Carbon nanotube thin-film-transistors for gas identification. Sens. Actuators B: Chem. 2019, 281, 1080–1087.

186

Tian, W.; Sun, H. X.; Chen, L.; Wangyang, P. H.; Chen, X. R.; Xiong, J.; Li, L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat 2019, 1, 140–163.

187

Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

188

Schroeder, V.; Savagatrup, S.; He, M.; Lin, S. B.; Swager, T. M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663.

189

Pang, J. B.; Bachmatiuk, A.; Yang, F.; Liu, H.; Zhou, W. J.; Rümmeli, M. H.; Cuniberti, G. Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 2021, 13, 191.

190

Hu, X. L.; Aggarwal, K.; Yang, M. X.; Parizi, K. B.; Xu, X. Q.; Akin, D.; Poon, A. S. Y.; Wong, H. S. P. Micrometer-scale magnetic-resonance-coupled radio-frequency identification and transceivers for wireless sensors in cells. Phys. Rev. Appl. 2017, 8, 014031.

191

Andre, R. S.; Ngo, Q. P.; Fugikawa-Santos, L.; Correa, D. S.; Swager, T. M. Wireless tags with hybrid nanomaterials for volatile amine detection. ACS Sens. 2021, 6, 2457–2464.

192

Tang, X. W.; Bansaruntip, S.; Nakayama, N.; Yenilmez, E.; Chang, Y. L.; Wang, Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 2006, 6, 1632–1636.

193

Tang, R. X.; Shi, Y. J.; Hou, Z. Y.; Wei, L. M. Carbon nanotube-based chemiresistive sensors. Sensors 2017, 17, 882.

194

Tran, T. T.; Clark, K.; Ma, W. B.; Mulchandani, A. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens. Bioelectron. 2020, 147, 111766.

195

Shen, Y.; Tran, T. T.; Modha, S.; Tsutsui, H.; Mulchandani, A. A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosens. Bioelectron. 2019, 130, 367–373.

196

Fu, Y. X.; Romay, V.; Liu, Y.; Ibarlucea, B.; Baraban, L.; Khavrus, V.; Oswald, S.; Bachmatiuk, A.; Ibrahim, I.; Rümmeli, M. et al. Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sens. Actuators B: Chem. 2017, 249, 691–699.

197

Panes-Ruiz, L. A.; Shaygan, M.; Fu, Y. X.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G. Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature. ACS Sens. 2018, 3, 79–86.

198

Sun, Q. H.; Wu, Z. F.; Cao, Y. L.; Guo, J. X.; Long, M. Q.; Duan, H. M.; Jia, D. Z. Chemiresistive sensor arrays based on noncovalently functionalized multi-walled carbon nanotubes for ozone detection. Sens. Actuators B: Chem. 2019, 297, 126689.

199

Luo, S. X. L.; Lin, C. J.; Ku, K. H.; Yoshinaga, K.; Swager, T. M. Pentiptycene polymer/single-walled carbon nanotube complexes: Applications in benzene, toluene, and o-xylene detection. ACS Nano 2020, 14, 7297–7307.

200

Li, T.; Wang, E. K.; Dong, S. J. Potassium-lead-switched G-quadruplexes: A new class of DNA logic gates. J. Am. Chem. Soc. 2009, 131, 15082–15083.

201

Liu, H. Y.; Zhang, L. N.; Li, M.; Yan, M.; Xue, M.; Zhang, Y.; Su, M.; Yu, J. H.; Ge, S. G. Electrochemiluminescent molecular logic gates based on MCNTs for the multiplexed analysis of mercury(II) and silver(I) ions. RSC Adv. 2016, 6, 26147–26154.

202

Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z. R.; Zhang, Z.; Zhu, S. J.; Wang, J.; Lozano, A. X.; Fan, Q. L.; Chew, L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 2017, 8, 15269.

203

Antaris, A. L.; Robinson, J. T.; Yaghi, O. K.; Hong, G. S.; Diao, S.; Luong, R.; Dai, H. J. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 2013, 7, 3644–3652.

204

Robinson, J. T.; Hong, G. S.; Liang, Y. Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664–10669.

205

Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

206

Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971–16974.

207

Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

208

Bergler, F. F.; Stahl, S.; Goy, A.; Schöppler, F.; Hertel, T. Substrate-mediated cooperative adsorption of sodium cholate on (6,5) single-wall carbon nanotubes. Langmuir 2016, 32, 9598–9603.

209

Mann, F. A.; Herrmann, N.; Opazo, F.; Kruss, S. Quantum defects as a toolbox for the covalent functionalization of carbon nanotubes with peptides and proteins. Angew. Chem., Int. Ed. 2020, 59, 17732–17738.

210

Djokić, D. M.; Goswami, A. Quantum yield in polymer wrapped single walled carbon nanotubes: A computational model. Nanotechnology 2017, 28, 465204.

211

Salem, D. P.; Gong, X.; Liu, A. T.; Koman, V. B.; Dong, J. Y.; Strano, M. S. Ionic strength-mediated phase transitions of surface-adsorbed dna on single-walled carbon nanotubes. J. Am. Chem. Soc. 2017, 139, 16791–16802.

212

Matsukawa, Y.; Umemura, K. Detection of redox properties of (6,5)-enriched single-walled carbon nanotubes using potassium permanganate (KMnO4). C J. Carbon Res. 2020, 6, 30.

213

Pan, J.; Li, F. R.; Choi, J. H. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J. Mater. Chem. B 2017, 5, 6511–6522.

214

Pan, J.; Zhang, H. Y.; Cha, T. G.; Chen, H. R.; Choi, J. H. Multiplexed optical detection of plasma porphyrins using DNA aptamer-functionalized carbon nanotubes. Anal. Chem. 2013, 85, 8391–8396.

215

Pan, J.; Cha, T. G.; Li, F. R.; Chen, H. R.; Bragg, N. A.; Choi, J. H. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers. Sci. Adv. 2017, 3, e1601600.

216

Ruan, C. P.; Liu, C. J.; Hu, H. L.; Guo, X. L.; Jiang, B. P.; Liang, H.; Shen, X. C. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem. Sci. 2019, 10, 4699–4706.

217

Wu, X. Z.; Suo, Y. K.; Shi, H.; Liu, R. Q.; Wu, F. X.; Wang, T. Z.; Ma, L. N.; Liu, H. G.; Cheng, Z. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-Micro Lett. 2020, 12, 38.

218

Xu, Q. F.; Zhao, S. F.; Deng, L.; Ouyang, J.; Wen, M.; Zeng, K.; Chen, W. S.; Zhang, L.; Liu, Y. N. A NIR-II light responsive hydrogel based on 2D engineered tungsten nitride nanosheets for multimode chemo/photothermal therapy. Chem. Commun. 2019, 55, 9471–9474.

219

Wang, S. W.; Chen, H.; Liu, J.; Chen, C. J.; Liu, B. NIR-II light activated photosensitizer with aggregation-induced emission for precise and efficient two-photon photodynamic cancer cell ablation. Adv. Funct. Mater. 2020, 30, 2002546.

220

Mann, F. A.; Lv, Z. Y.; Großhans, J.; Opazo, F.; Kruss, S. Nanobody-conjugated nanotubes for targeted near-infrared in vivo imaging and sensing. Angew. Chem., Int. Ed. 2019, 58, 11469–11473.

221

Ohta, H.; Orita, M.; Hirano, M.; Tanji, H.; Kawazoe, H.; Hosono, H. Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Appl. Phys. Lett. 2000, 76, 2740–2742.

222

Fukano, T.; Motohiro, T. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells 2004, 82, 567–575.

223

Reinoso, C.; Berkmann, C.; Shi, L.; Debut, A.; Yanagi, K.; Pichler, T.; Ayala, P. Toward a predominant substitutional bonding environment in b-doped single-walled carbon nanotubes. ACS Omega 2019, 4, 1941–1946.

224

Abdi-Jalebi, M.; Ibrahim Dar, M.; Senanayak, S. P.; Sadhanala, A.; Andaji-Garmaroudi, Z.; Pazos-Outon, L. M.; Richter, J. M.; Pearson, A. J.; Sirringhaus, H.; Grätzel, M. et al. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 2019, 5, eaav2012.

225

Oh, W. K.; Hussain, S. Q.; Lee, Y. J.; Lee, Y.; Ahn, S.; Yi, J. Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si: H(p) in amorphous/crystalline silicon heterojunction solar cells. Mater. Res. Bull. 2012, 47, 3032–3035.

226

Rajanna, P. M.; Meddeb, H.; Sergeev, O.; Tsapenko, A. P.; Bereznev, S.; Vehse, M.; Volobujeva, O.; Danilson, M.; Lund, P. D.; Nasibulin, A. G. Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 2020, 67, 104183.

227

Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.

228

Gladush, Y.; Mkrtchyan, A. A.; Kopylova, D. S.; Ivanenko, A.; Nyushkov, B.; Kobtsev, S.; Kokhanovskiy, A.; Khegai, A.; Melkumov, M.; Burdanova, M. et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation. Nano Lett. 2019, 19, 5836–5843.

229

Jorio, A.; Saito, R.; Hertel, T.; Weisman, R. B.; Dresselhaus, G.; Dresselhaus, M. S. Carbon nanotube photophysics. MRS Bull. 2004, 29, 276–280.

230

Zheng, Y.; Bachilo, S. M.; Weisman, R. B. Controlled patterning of carbon nanotube energy levels by covalent DNA functionalization. ACS Nano 2019, 13, 8222–8228.

231

Yao, F. R.; Liu, C.; Chen, C.; Zhang, S. C.; Zhao, Q. C.; Xiao, F. J.; Wu, M. H.; Li, J. M.; Gao, P.; Zhao, J. L. et al. Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation. Nat. Commun. 2018, 9, 3387.

232

Nikonov, D. E. Stochastic magnetic circuits rival quantum computing. Nature 2019, 573, 351–352.

233

Luo, Y.; Ahmadi, E. D.; Shayan, K.; Ma, Y. C.; Mistry, K. S.; Zhang, C. J.; Hone, J.; Blackburn, J. L.; Strauf, S. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 2017, 8, 1413.

234

Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 2016, 10, 727–732.

235

Liang, S.; Ma, Z.; Wu, G. T.; Wei, N.; Huang, L.; Huang, H. X.; Liu, H. P.; Wang, S.; Peng, L. M. Microcavity-integrated carbon nanotube photodetectors. ACS Nano 2016, 10, 6963–6971.

236

He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577–582.

237

Ishii, A.; He, X. W.; Hartmann, N. F.; Machiya, H.; Htoon, H.; Doorn, S. K.; Kato, Y. K. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 2018, 18, 3873–3878.

238

Setaro, A.; Adeli, M.; Glaeske, M.; Przyrembel, D.; Bisswanger, T.; Gordeev, G.; Maschietto, F.; Faghani, A.; Paulus, B.; Weinelt, M. et al. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 2017, 8, 14281.

239

El-Moussawi, Z.; Nourdine, A.; Medlej, H.; Hamieh, T.; Chenevier, P.; Flandin, L. Fine tuning of optoelectronic properties of single-walled carbon nanotubes from conductors to semiconductors. Carbon 2019, 153, 337–346.

240

Gaulke, M.; Janissek, A.; Peyyety, N. A.; Alamgir, I.; Riaz, A.; Dehm, S.; Li, H.; Lemmer, U.; Flavel, B. S.; Kappes, M. M. et al. Low-temperature electroluminescence excitation mapping of excitons and trions in short-channel monochiral carbon nanotube devices. ACS Nano 2020, 14, 2709–2717.

241

Kim, Y.; Goupalov, S. V.; Weight, B. M.; Gifford, B. J.; He, X. W.; Saha, A.; Kim, M.; Ao, G. Y.; Wang, Y. H.; Zheng, M. et al. Hidden fine structure of quantum defects revealed by single carbon nanotube magneto-photoluminescence. ACS Nano 2020, 14, 3451–3460.

242

Zhou, H. X.; Wang, J.; Ji, C. H.; Liu, X. C.; Han, J. Y.; Yang, M.; Gou, J.; Xu, J.; Jiang, Y. D. Polarimetric Vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon 2019, 143, 844–850.

243

Park, S.; Loke, G.; Fink, Y.; Anikeeva, P. Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 2019, 48, 1826–1852.

244

Su, W.; Yang, D. H.; Cui, J. M.; Wang, F. T.; Wei, X. J.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon 2020, 163, 370–378.

245

Cai, B. F.; Su, Y. J.; Tao, Z. J.; Hu, J.; Zou, C.; Yang, Z.; Zhang, Y. F. Highly Sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv. Opt. Mater. 2018, 6, 1800791.

246

Jariwala, D.; Sangwan, V. K.; Wu, C. C.; Prabhumirashi, P. L.; Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. USA 2013, 110, 18076–18080.

247

Spina, M.; Náfrádi, B.; Tóháti, H. M.; Kamarás, K.; Bonvin, E.; Gaal, R.; Forró, L.; Horváth, E. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes. Nanoscale 2016, 8, 4888–4893.

248

Ma, Z.; Yang, L. J.; Liu, L. J.; Wang, S.; Peng, L. M. Silicon-waveguide-integrated carbon nanotube optoelectronic system on a single chip. ACS Nano 2020, 14, 7191–7199.

249

Liu, Y.; Wang, S.; Liu, H. P.; Peng, L. M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649.

250

Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.

251

Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R. Near-infrared photoresponse of waveguide-integrated carbon nanotube-silicon junctions. Adv. Electron. Mater. 2019, 5, 1800265.

252

Fang, N.; Otsuka, K.; Ishii, A.; Taniguchi, T.; Watanabe, K.; Nagashio, K.; Kato, Y. K. Hexagonal boron nitride as an ideal substrate for carbon nanotube photonics. ACS Photonics 2020, 7, 1773–1779.

253

Cui, K. H.; Lemaire, P.; Zhao, H. B.; Savas, T.; Parsons, G.; Hart, A. J. Tungsten-carbon nanotube composite photonic crystals as thermally stable spectral-selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater. 2018, 8, 1801471.

254

Doshi, S. M.; Thostenson, E. T. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range. ACS Sens. 2018, 3, 1276–1282.

255

Song, Y. Q.; Huang, W. T.; Mu, C. H.; Chen, X. X.; Zhang, Q. H.; Ran, A.; Peng, Z. R.; Sun, R. J.; Xie, W. H. Carbon nanotube-modified fabric for wearable smart electronic-skin with exclusive normal-tangential force sensing ability. Adv. Mater. Technol. 2019, 4, 1800680.

256

Hsiao, L. Y.; Jing, L.; Li, K. R.; Yang, H. T.; Li, Y.; Chen, P. Y. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon 2020, 161, 784–793.

257

Kang, B. C.; Ha, T. J. Human-interactive drone system remotely controlled by printed strain/pressure sensors consisting of carbon-based nanocomposites. Compos. Sci. Technol. 2019, 182, 107784.

258

Chen, D.; Liu, Z.; Li, Y.; Sun, D. H.; Liu, X. Y.; Pang, J. B.; Liu, H.; Zhou, W. J. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl. Mater. Interfaces 2020, 12, 30896–30904.

259

Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

260

Kim, H.; Seo, M.; Kim, J. W.; Kwon, D. K.; Choi, S. E.; Kim, J. W.; Myoung, J. M. Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire-single-walled carbon nanotube composite. Adv. Funct. Mater. 2019, 29, 1901061.

261

Liao, J. W.; Zou, Y.; Jiang, D. J.; Liu, Z. Z.; Qu, X. C.; Li, Z.; Liu, R. P.; Fan, Y. B.; Shi, B. J.; Li, Z. et al. Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy 2020, 69, 104417.

262

Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

263

Moon, J. H.; Kim, B. J.; Jang, Y.; Mun, T. J.; Kim, H.; Kim, S. J. Self-powered inertial sensor based on carbon nanotube yarn. IEEE Trans. Ind. Electron. 2021, 68, 8904–8910.

264

Zhang, M. Y.; Ban, D. Y.; Xu, C.; Yeow, J. T. W. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber. ACS Nano 2019, 13, 13285–13292.

265

Zaia, E. W.; Gordon, M. P.; Yuan, P. Y.; Urban, J. J. Progress and perspective: Soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 2019, 5, 1800823.

266

Zheng, Y. Y.; Zhang, Q. H.; Jin, W. L.; Jing, Y. Y.; Chen, X. Y.; Han, X.; Bao, Q. Y.; Liu, Y. P.; Wang, X. H.; Wang, S. R. et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J. Mater. Chem. A 2020, 8, 2984–2994.

267

Mao, J.; Zhu, H. T.; Ding, Z. W.; Liu, Z.; Gamage, G. A.; Chen, G.; Ren, Z. F. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019, 365, 495–498.

268

Hung, N. T.; Nugraha, A. R. T.; Saito, R. Thermoelectric properties of carbon nanotubes. Energies 2019, 12, 4561.

269

Zhu, H. T.; Mao, J.; Feng, Z. Z.; Sun, J. F.; Zhu, Q.; Liu, Z. H.; Singh, D. J.; Wang, Y. M.; Ren, Z. F. Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Sci. Adv. 2019, 5, eaav5813.

270

Blackburn, J. L.; Kang, S. D.; Roos, M. J.; Norton-Baker, B.; Miller, E. M.; Ferguson, A. J. Intrinsic and extrinsically limited thermoelectric transport within semiconducting single-walled carbon nanotube networks. Adv. Electron. Mater. 2019, 5, 1800910.

271

Wang, L. M.; Zhang, Z. M.; Liu, Y. C.; Wang, B. R.; Fang, L.; Qiu, J. J.; Zhang, K.; Wang, S. R. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817.

272

MacLeod, B. A.; Stanton, N. J.; Gould, I. E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z. R.; Hurst, K. E.; Fewox, C. S.; Folmar, C. N.; Hughes, K. H. et al. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 2017, 10, 2168–2179.

273

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Cai, L.; Li, K. W.; Gu, X. G.; Yang, F.; Zhang, N.; Wang, Y. C.; Liu, H. P. et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat. Commun. 2017, 8, 14886.

274

Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

275

Liu, Y.; Nitschke, M.; Stepien, L.; Khavrus, V.; Bezugly, V.; Cuniberti, G. Ammonia plasma-induced n-type doping of semiconducting carbon nanotube films: Thermoelectric properties and ambient effects. ACS Appl. Mater. Interfaces 2019, 11, 21807–21814.

276

Liu, Y.; Khavrus, V.; Lehmann, T.; Yang, H. L.; Stepien, L.; Greifzu, M.; Oswald, S.; Gemming, T.; Bezugly, V.; Cuniberti, G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices. ACS Appl. Energy Mater. 2020, 3, 2556–2564.

277

Medrano Sandonas, L.; Cuba-Supanta, G.; Gutierrez, R.; Landauro, C. V.; Rojas-Tapia, J.; Cuniberti, G. Doping engineering of thermoelectric transport in BNC heteronanotubes. Phys. Chem. Chem. Phys. 2019, 21, 1904–1911.

278

Krompiewski, S.; Cuniberti, G. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons. Phys. Rev. B 2017, 96, 155447.

279

Lehmann, T.; Ryndyk, D. A.; Cuniberti, G. Thermoelectric properties of nanocarbons: Atomistic modeling. Phys. Status Solidi (a) 2016, 213, 591–602.

280

Medrano Sandonas, L.; Teich, D.; Gutierrez, R.; Lorenz, T.; Pecchia, A.; Seifert, G.; Cuniberti, G. Anisotropic thermoelectric response in two-dimensional puckered structures. J. Phys. Chem. C 2016, 120, 18841–18849.

281

Zhao, L. L.; Yang, Z. Y.; Cao, Q.; Yang, L. J.; Zhang, X. F.; Jia, J.; Sang, Y. H.; Wu, H. J.; Zhou, W. J.; Liu, H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 2019, 56, 563–570.

282

Nonoguchi, Y.; Tani, A.; Ikeda, T.; Goto, C.; Tanifuji, N.; Uda, R. M.; Kawai, T. Water-processable, air-stable organic nanoparticle-carbon nanotube nanocomposites exhibiting n-type thermoelectric properties. Small 2017, 13, 1603420.

283

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Li, K. W.; Cai, L.; Gu, X. G.; Yang, F.; Zhang, N.; Xiao, Z. J.; Chen, H. L. et al. Ultrahigh-power-factor carbon nanotubes and an ingenious strategy for thermoelectric performance evaluation. Small 2016, 12, 3407–3414.

284

Choi, J.; Jung, Y.; Dun, C. C.; Park, K. T.; Gordon, M. P.; Haas, K.; Yuan, P. Y.; Kim, H.; Park, C. R.; Urban, J. J. High-performance, wearable thermoelectric generator based on a highly aligned carbon nanotube sheet. ACS Appl. Energy Mater. 2020, 3, 1199–1206.

285

Hsu, J. H.; Yu, C. Sorting-free utilization of semiconducting carbon nanotubes for large thermoelectric responses. Nano Energy 2020, 67, 104282.

286

Prabhakar, R.; Hossain, S.; Zheng, W.; Athikam, P. K.; Zhang, Y.; Hsieh, Y. Y.; Skafidas, E.; Wu, Y.; Shanov, V.; Bahk, J. H. Tunneling-limited thermoelectric transport in carbon nanotube networks embedded in poly(dimethylsiloxane) elastomer. ACS Appl. Energy Mater. 2019, 2, 2419–2426.

287

Shi, Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z. X.; Lee, C. Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.

288

Tsen, A. W.; Donev, L. A. K.; Kurt, H.; Herman, L. H.; Park, J. Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nat. Nanotechnol. 2009, 4, 108–113.

289

Gabor, N. M.; Zhong, Z. H.; Bosnick, K.; Park, J.; McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367–1371.

290

Suzuki, D.; Li, K.; Ishibashi, K.; Kawano, Y. A terahertz video camera patch sheet with an adjustable design based on self-aligned, 2D, suspended sensor array patterning. Adv. Funct. Mater. 2021, 31, 2008931.

291

Llinas, J. P.; Hekmaty, M. A.; Talin, A. A.; Léonard, F. Origami terahertz detectors realized by inkjet printing of carbon nanotube inks. ACS Appl. Nano Mater. 2020, 3, 2920–2927.

292

Suzuki, D.; Ochiai, Y.; Kawano, Y. Thermal device design for a carbon nanotube terahertz camera. ACS Omega 2018, 3, 3540–3547.

293

Suzuki, D.; Kawano, Y. Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon 2020, 162, 13–24.

294

Shao, L.; Wang, H. L.; Yang, Y.; He, Y. L.; Tang, Y. C.; Fang, H. H.; Zhao, J. W.; Xiao, H. S.; Liang, K.; Wei, M. M. et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl. Mater. Interfaces 2019, 11, 12161–12169.

295

Gu, Y.; Wang, X. W.; Gu, W.; Wu, Y. J.; Li, T.; Zhang, T. Flexible electronic eardrum. Nano Res. 2017, 10, 2683–2691.

296

Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

297

Orzechowska, S.; Mazurek, A.; Świsłocka, R.; Lewandowski, W. Electronic nose: Recent developments in gas sensing and molecular mechanisms of graphene detection and other materials. Materials 2020, 13, 80.

298

Park, S. Y.; Kim, Y.; Kim, T.; Eom, T. H.; Kim, S. Y.; Jang, H. W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 2019, 1, 289–316.

299

Eising, M.; Cava, C. E.; Salvatierra, R. V.; Zarbin, A. J. G.; Roman, L. S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B: Chem. 2017, 245, 25–33.

300

Liu, B. H.; Liu, X. Y.; Yuan, Z.; Jiang, Y. D.; Su, Y. J.; Ma, J. Y.; Tai, H. L. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B: Chem. 2019, 295, 86–92.

301

Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C. S. Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon 2020, 157, 631–639.

302

Ghodrati, M.; Farmani, A.; Mir, A. Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: A first-principle study. IEEE Sens. J. 2019, 19, 7373–7377.

303

Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuators B: Chem. 2019, 279, 69–78.

304

Chatterjee, S.; Castro, M.; Feller, J. F. An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. Mater. Chem. B 2013, 1, 4563–4575.

305

Park, C. H.; Schroeder, V.; Kim, B. J.; Swager, T. M. Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 2018, 3, 2432–2437.

306

Graboski, A. M.; Zakrzevski, C. A.; Shimizu, F. M.; Paschoalin, R. T.; Soares, A. C.; Steffens, J.; Paroul, N.; Steffens, C. Electronic nose based on carbon nanocomposite sensors for clove essential oil detection. ACS Sens. 2020, 5, 1814–1821.

307

Zhu, T. X.; Zhang, Y. F.; Luo, L. Q.; Zhao, X. L. Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 10856–10861.

308

Fikri, N. A.; Adom, A. H.; Shakaff, A. Y.; Ahmad, M. N.; Abdullah, A. H.; Zakaria, A.; Markom, M. A. Development of human sensory mimicking system. Sens. Lett. 2011, 9, 423–427.

309

Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171.

310

Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.

311

Kim, M. H.; Cho, C. H.; Kim, J. S.; Nam, T. U.; Kim, W. S.; Lee, T. I.; Oh, J. Y. Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy 2021, 87, 106156.

312

Sun, K.; Ko, H.; Park, H. H.; Seong, M.; Lee, S. H.; Yi, H.; Park, H. W.; Kim, T. I.; Pang, C.; Jeong, H. E. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range. Small 2018, 14, 1803411.

313

Guo, Y. J.; Wei, X.; Gao, S.; Yue, W. J.; Li, Y.; Shen, G. Z. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288.

314

Nela, L.; Tang, J. S.; Cao, Q.; Tulevski, G.; Han, S. J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054–2059.

315

Bakh, N. A.; Gong, X.; Lee, M. A.; Jin, X. J.; Koman, V. B.; Park, M.; Nguyen, F. T.; Strano, M. S. Transcutaneous measurement of essential vitamins using near-infrared fluorescent single-walled carbon nanotube sensors. Small 2021, 17, 2100540.

316

Dong, J. Y.; Salem, D. P.; Sun, J. H.; Strano, M. S. Analysis of multiplexed nanosensor arrays based on near-infrared fluorescent single-walled carbon nanotubes. ACS Nano 2018, 12, 3769–3779.

317

Landry, M. P.; Ando, H.; Chen, A. Y.; Cao, J. C.; Kottadiel, V. I.; Chio, L.; Yang, D.; Dong, J. Y.; Lu, T. K.; Strano, M. S. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 2017, 12, 368–377.

318

Zhang, S.; Ma, B.; Zhou, X. Y.; Hua, Q. L.; Gong, J.; Liu, T.; Cui, X.; Zhu, J. Y.; Guo, W. B.; Jing, L. et al. Strain-controlled power devices as inspired by human reflex. Nat. Commun. 2020, 11, 326.

319

Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.

320

Ghasemi Yeklangi, A.; Khadem, S. E.; Darbari, S. Fabrication and investigation of a thermoacoustic loudspeaker based on carbon nanotube coated laser-scribed graphene. J. Appl. Phys. 2018, 124, 224501.

321

Wei, Y.; Lin, X. Y.; Jiang, K. L.; Liu, P.; Li, Q. Q.; Fan, S. S. Thermoacoustic chips with carbon nanotube thin yarn arrays. Nano Lett. 2013, 13, 4795–4801.

322

Mason, B. J.; Chang, S. W.; Chen, J. H.; Cronin, S. B.; Bushmaker, A. W. Thermoacoustic transduction in individual suspended carbon nanotubes. ACS Nano 2015, 9, 5372–5376.

323

Wang, W.; Xiang, C. X.; Zhu, Q.; Zhong, W. B.; Li, M. F.; Yan, K. L.; Wang, D. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices. ACS Appl. Mater. Interfaces 2018, 10, 27215–27223.

324

Kim, H.; Lee, J. A.; Ambulo, C. P.; Lee, H. B.; Kim, S. H.; Naik, V. V.; Haines, C. S.; Aliev, A. E.; Ovalle-Robles, R.; Baughman, R. H. et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater. 2019, 29, 1905063.

325

Li, P. J.; Ali, H. P. A.; Cheng, W.; Yang, J. Y.; Tee, B. C. K. Bioinspired prosthetic interfaces. Adv. Mater. Technol. 2020, 5, 1900856.

326

Jan, E.; Hendricks, J. L.; Husaini, V.; Richardson-Burns, S. M.; Sereno, A.; Martin, D. C.; Kotov, N. A. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett. 2009, 9, 4012–4018.

327

Lu, L. L.; Fu, X. F.; Liew, Y.; Zhang, Y. Y.; Zhao, S. Y.; Xu, Z.; Zhao, J. N.; Li, D.; Li, Q. W.; Stanley, G. B. et al. Soft and mri compatible neural electrodes from carbon nanotube fibers. Nano Lett. 2019, 19, 1577–1586.

328

Chen, G. H.; Dodson, B.; Hedges, D. M.; Steffensen, S. C.; Harb, J. N.; Puleo, C.; Galligan, C.; Ashe, J.; Vanfleet, R. R.; Davis, R. C. Fabrication of high aspect ratio millimeter-tall free-standing carbon nanotube-based microelectrode arrays. ACS Biomater. Sci. Eng. 2018, 4, 1900–1907.

329

Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065–1073.

330

Ferguson, M.; Sharma, D.; Ross, D.; Zhao, F. A critical review of microelectrode arrays and strategies for improving neural interfaces. Adv. Healthc. Mater. 2019, 8, 1900558.

331

Barrejón, M.; Rauti, R.; Ballerini, L.; Prato, M. Chemically cross-linked carbon nanotube films engineered to control neuronal signaling. ACS Nano 2019, 13, 8879–8889.

332

Keefer, E. W.; Botterman, B. R.; Romero, M. I.; Rossi, A. F.; Gross, G. W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008, 3, 434–439.

333

Vitale, F.; Summerson, S. R.; Aazhang, B.; Kemere, C.; Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 2015, 9, 4465–4474.

334

Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

335

Ji, X. L.; Zhao, X. Y.; Tan, M. C.; Zhao, R. Artificial perception built on memristive system: Visual, auditory, and tactile sensations. Adv. Intell. Syst. 2020, 2, 1900118.

336

Chou, Y. H.; Chu, T. H.; Kuo, S. Y.; Chen, C. Y. An adaptive emergency broadcast strategy for vehicular Ad Hoc networks. IEEE Sens. J. 2018, 18, 4814–4821.

337

Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

338

Kim, S.; Roe, D. G.; Choi, Y. Y.; Woo, H.; Park, J.; Lee, J. I.; Choi, Y.; Jo, S. B.; Kang, M. S.; Song, Y. J. et al. Artificial stimulus-response system capable of conscious response. Sci. Adv. 2021, 7, eabe3996.

339

Tang, Y. C.; Li, X. J.; Lv, H. M.; Wang, W. L.; Zhi, C. Y.; Li, H. F. Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring: A minireview. InfoMat 2020, 2, 1109–1130.

340

Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56.

341

Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y. J.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

342

Ozek, E. A.; Tanyeli, S.; Yapici, M. K. Flexible graphene textile temperature sensing RFID coils based on spray printing. IEEE Sens. J. 2021, 21, 26382–26388.

343

Bu, C. Y.; Li, F. J.; Yin, K.; Pang, J. B.; Wang, L. C.; Wang, K. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2020, 2, 863–878.

344

Liu, Y. M.; Wang, L. Y.; Zhao, L.; Yu, X. G.; Zi, Y. L. Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2020, 2, 318–340.

345

Feng, X.; Zhang, Y.; Kang, L.; Wang, L. C.; Duan, C. X.; Yin, K.; Pang, J. B.; Wang, K. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Front. Chem. Sci. Eng. 2021, 15, 238–250.

346

Zhao, L. M.; Li, H.; Meng, J. P.; Li, Z. The recent advances in self-powered medical information sensors. InfoMat 2020, 2, 212–234.

347

Rao, R. H.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.

348

He, M. S.; Wang, X.; Zhang, S. C.; Jiang, H.; Cavalca, F.; Cui, H. Z.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection. Sci. Adv. 2019, 5, eaav9668.

349

Zhao, Q. C.; Xu, Z. W.; Hu, Y.; Ding, F.; Zhang, J. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci. Adv. 2016, 2, e1501729.

350

Wang, H. M.; Wang, H. M.; Zhang, S. C.; Zhang, Y.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Li, S. et al. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Res. 2022, 15, 2578–2583.

351

Hou, B.; Wu, C.; Inoue, T.; Chiashi, S.; Xiang, R.; Maruyama, S. Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon 2017, 119, 502–510.

352

Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n-1) Family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.

353

Antaris, A. L.; Yaghi, O. K.; Hong, G. S.; Diao, S.; Zhang, B.; Yang, J.; Chew, L.; Dai, H. J. Single chirality (6,4) single-walled carbon nanotubes for fluorescence imaging with silicon detectors. Small 2015, 11, 6325–6330.

354

Zhang, S. C.; Qian, L.; Zhao, Q. C.; Wang, Z. Q.; Lin, D. W.; Liu, W. M.; Chen, Y. B.; Zhang, J. Carbon nanotube: Controlled synthesis determines its future. Sci. China Mater. 2020, 63, 16–34.

355

He, M. S.; Zhang, S. C.; Wu, Q. R.; Xue, H.; Xin, B. W.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.

356

Xie, Y.; Qian, L.; Lin, D. W.; Yu, Y.; Wang, S. S.; Zhang, J. Growth of homogeneous high-density horizontal SWNT arrays on sapphire through a magnesium-assisted catalyst anchoring strategy. Angew. Chem., Int. Ed. 2021, 60, 9330–9333.

357

Tang, L.; Luo, Y. T.; Zhang, S. C.; Zhang, Q. C.; Yao, Y. G.; Zhang, J. Substrate-anchored solid solution catalysts for high density SWNTs growth. Carbon 2018, 126, 313–318.

358

Zhao, X. L.; Zhang, S. C.; Zhu, Z. X.; Zhang, J.; Wei, F.; Li, Y. Catalysts for single-wall carbon nanotube synthesis-from surface growth to bulk preparation. MRS Bull. 2017, 42, 809–818.

359

Zhao, X. L.; Yang, F.; Chen, J. H.; Ding, L.; Liu, X. Y.; Yao, F. R.; Li, M. H.; Zhang, D. Q.; Zhang, Z. Y.; Liu, X. et al. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. Nanoscale 2018, 10, 6922–6927.

360

Liu, W. M.; Zhang, S. C.; Qian, L.; Lin, D. W.; Zhang, J. Growth of high-density horizontal SWNT arrays using multi-cycle in-situ loading catalysts. Carbon 2020, 157, 164–168.

361

Zhang, S. C.; Tong, L. N.; Hu, Y.; Kang, L. X.; Zhang, J. Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J. Am. Chem. Soc. 2015, 137, 8904–8907.

362

Lin, D. W.; Zhang, S. C.; Liu, W. M.; Yu, Y.; Zhang, J. Carburization of Fe/Ni catalyst for efficient growth of single-walled carbon nanotubes. Small 2019, 15, 1902240.

363

Chen, Y. B.; Zhang, J. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc Chem. Res. 2014, 47, 2273–2281.

364

Zhang, S. C.; Tong, L. M.; Zhang, J. The road to chirality-specific growth of single-walled carbon nanotubes. Natl. Sci. Rev. 2018, 5, 310–312.

365

Lin, D. W.; Zhang, S. C.; Zheng, Z.; Hu, W. P.; Zhang, J. Microwave-assisted regeneration of single-walled carbon nanotubes from carbon fragments. Small 2018, 14, 1800033.

366

Lin, D. W.; Yu, Y.; Li, L. Y.; Zou, M. Z.; Zhang, J. Growth of semiconducting single-walled carbon nanotubes array by precisely inhibiting metallic tubes using ZrO2 nanoparticles. Small 2021, 17, 2006605.

367

Huang, X.; Farra, R.; Schlögl, R.; Willinger, M. G. Growth and termination dynamics of multiwalled carbon nanotubes at near ambient pressure: An in situ transmission electron microscopy study. Nano Lett. 2019, 19, 5380–5387.

368

Zhao, Q. C.; Yao, F. R.; Wang, Z. Q.; Deng, S. B.; Tong, L. M.; Liu, K. H.; Zhang, J. Real-time observation of carbon nanotube etching process using polarized optical microscope. Adv. Mater. 2017, 29, 1701959.

369

Gogotsi, Y.; Yakobson, B. I. Nested hybrid nanotubes. Science 2020, 367, 506–507.

370

Xiang, R.; Inoue, T.; Zheng, Y. J.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D. M.; Gokhale, D.; Guo, J. et al. One-dimensional van der Waals heterostructures. Science 2020, 367, 537–542.

371

Ying, P. H.; Zhang, J.; Du, Y.; Zhong, Z. Effects of coating layers on the thermal transport in carbon nanotubes-based van der Waals heterostructures. Carbon 2021, 176, 446–457.

372

Cambré, S.; Liu, M.; Levshov, D.; Otsuka, K.; Maruyama, S.; Xiang, R. Nanotube-based 1D heterostructures coupled by van der waals forces. Small 2021, 17, 2102585.

373

Xiang, R.; Maruyama, S. Heteronanotubes: Challenges and opportunities. Small Sci. 2021, 1, 2000039.

374

Burdanova, M. G.; Kashtiban, R. J.; Zheng, Y. J.; Xiang, R.; Chiashi, S.; Woolley, J. M.; Staniforth, M.; Sakamoto-Rablah, E.; Xie, X.; Broome, M. et al. Ultrafast optoelectronic processes in 1d radial van der waals heterostructures: Carbon, boron nitride, and MoS2 nanotubes with coexisting excitons and highly mobile charges. Nano Lett. 2020, 20, 3560–3567.

375

Delacou, C.; Jeon, I.; Otsuka, K.; Inoue, T.; Anisimov, A.; Fujii, T.; Kauppinen, E. I.; Maruyama, S.; Matsuo, Y. Investigation of charge interaction between fullerene derivatives and single-walled carbon nanotubes. InfoMat 2019, 1, 559–570.

376

Hu, S.; Ling, X.; Lan, T.; Wang, X. Cluster-based self-assembly route toward MoO3 single-walled nanotubes. Chem. -Eur. J. 2010, 16, 1889–1896.

377

Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882–890.

378

Ni, B.; Liu, H. L.; Wang, P. P.; He, J.; Wang, X. General synthesis of inorganic single-walled nanotubes. Nat. Commun. 2015, 6, 8756.

379

Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.

380

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

381

Ni, B.; Shi, Y.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.

382

Ni, B.; Wang, X. Face the edges: Catalytic active sites of nanomaterials. Adv. Sci. 2015, 2, 1500085.

383

Zhang, Z. C.; Xu, B.; Wang, X. Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 2014, 43, 7870–7886.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 August 2021
Revised: 28 October 2021
Accepted: 09 November 2021
Published: 13 January 2022
Issue date: May 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

The authors acknowledge the financial funds of the National Key Research and Development Program of China (No. 2017YFB0405400) and the Project of “20 items of University” of Jinan (No. 2018GXRC031). W. J. Z thanks the National Natural Science Foundation of China (No. 52022037) and Taishan Scholars Project Special Funds (No. tsqn201812083). J. B. P. shows his gratitude to the National Natural Science Foundation of China (No. 51802116) and the Natural Science Foundation of Shandong Province, China (No. ZR2019BEM040). F. Y. was supported by the National Natural Science Foundation of China (Nos. 52002165, 92161124, and 21631002), the National Key Research and Development Program of China (No. 2021YFA0717400), Shenzhen Basic Research Project (Nos. JCYJ20210324104808022 and JCYJ20170817113121505), Beijing National Laboratory for Molecular Sciences (No. BNLMS202013), Guangdong Provincial Natural Science Foundation (No. 2021A1515010229), Innovation Project for Guangdong Provincial Department of Education (No. 2019KTSCX155), and Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002). M. H. R. thanks the National Science Foundation China (No. 52071225), the National Science Center and the Czech Republic under the ERDF program “Institute of Environmental Technology-Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853) and the Sino-German Research Institute for support (Project No. GZ 1400).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return