Journal Home > Volume 15 , Issue 4

In the past decades, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) basically enjoy the coordination chemistry and covalent chemistry, respectively, and such uniqueness has become the major obstacle hampering their further scope diversity and application multi-functionalization. Inspired from the principle of organic retrosynthesis, combining coordination bond and covalent bond together offers additional opportunities for constructing novel MOFs, COFs and MOF@COF hybrids as well as confer on them superior performances in versatile application fields. In this review, we firstly classify and summarize the recently reported synthesis strategies based on the integration of metal–ligand coordination and dynamic covalent bonds. Then, the application performances of as-constructed MOFs, COFs as well as MOF@COF hybrids are discussed and highlighted in the fields of adsorption, separation, catalysis, biosensing, energy storage and so on. Last, our personal insights of the remaining challenges and further prospects are also provided, in order to trigger much more inspirations and endeavors for this hot research field.


menu
Abstract
Full text
Outline
About this article

Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications

Show Author's information Zhixi Li1,§Jun Guo2,§( )Yue Wan1Yutian Qin1Meiting Zhao1( )
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
School of Chemistry, Tiangong University, Tianjin 300387, China

§ Zhixi Li and Jun Guo contributed equally to this work.

Abstract

In the past decades, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) basically enjoy the coordination chemistry and covalent chemistry, respectively, and such uniqueness has become the major obstacle hampering their further scope diversity and application multi-functionalization. Inspired from the principle of organic retrosynthesis, combining coordination bond and covalent bond together offers additional opportunities for constructing novel MOFs, COFs and MOF@COF hybrids as well as confer on them superior performances in versatile application fields. In this review, we firstly classify and summarize the recently reported synthesis strategies based on the integration of metal–ligand coordination and dynamic covalent bonds. Then, the application performances of as-constructed MOFs, COFs as well as MOF@COF hybrids are discussed and highlighted in the fields of adsorption, separation, catalysis, biosensing, energy storage and so on. Last, our personal insights of the remaining challenges and further prospects are also provided, in order to trigger much more inspirations and endeavors for this hot research field.

Keywords: hybrids, applications, metal-organic frameworks (MOFs), coordination chemistry, covalent organic frameworks (COFs), covalent chemistry

References(189)

1

Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

2

Chen, Z. J.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 2019, 386, 32–49.

3

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

4

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

5

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

6

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

7

O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.

8

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

9

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

10

Wang, Y. F.; Li, Y. X.; Wang, Z. Y.; Allan, P.; Zhang, F. C.; Lu, Z. G. Reticular chemistry in electrochemical carbon dioxide reduction. Sci. China Mater. 2020, 63, 1113–1141.

11

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

12

Howarth, A. J.; Liu, Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

13

Peh, S. B.; Karmakar, A.; Zhao, D. Multiscale design of flexible metal-organic frameworks. Trends Chem. 2020, 2, 199–213.

14

Wang, X.; She, P. F.; Zhang, Q. C. Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2021, 2, 299–325.

15

Bisbey, R. P.; Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 2017, 3, 533–543.

16

Li, X. L.; Cai, S. L.; Sun, B.; Yang, C. Q.; Zhang, J.; Liu, Y. Chemically robust covalent organic frameworks: Progress and perspective. Matter 2020, 3, 1507–1540.

17

Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. L. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

18

Qi, H. Y.; Liang, B. K.; Kaiser, U. Perspective towards atomic-resolution imaging of two-dimensional polymers. SmartMat 2021, 2, 131–138.

19

Yuan, S.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J. D.; Zhang, L. L.; Sun, D. et al. Retrosynthesis of multi-component metal-organic frameworks. Nat. Commun. 2018, 9, 808.

20

Nguyen, H. L.; Gándara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. A titanium-organic framework as an exemplar of combining the chemistry of metal- and covalent-organic frameworks. J. Am. Chem. Soc. 2016, 138, 4330–4333.

21

Wang, Y. X.; Zhao, X.; Yang, H. J.; Bu, X. H.; Wang, Y.; Jia, X. X.; Li, J. P.; Feng, P. Y. A tale of two trimers from two different worlds: A COF-inspired synthetic strategy for pore-space partitioning of MOFs. Angew. Chem., Int. Ed. 2019, 58, 6316–6320.

22

Wei, R. J.; Zhou, H. G.; Zhang, Z. Y.; Ning, G. H.; Li, D. Copper(I)-organic frameworks for catalysis: Networking metal clusters with dynamic covalent chemistry. CCS Chem. 2021, 3, 2045–2053.

23

Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

24

Liu, Y. Z.; Ma, Y. H.; Zhao, Y. B.; Sun, X. X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H. Y.; Zhu, C. H.; Suenaga, K. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 2016, 351, 365–369.

25

Liu, Y. Z.; Yaghi, O. M. Metal coordination as a template strategy to make resilient woven materials. Bull. Jpn. Soc. Coord. Chem. 2018, 71, 12–17.

26

Xu, H. S.; Luo, Y.; Li, X.; See, P. Z.; Chen, Z. X.; Ma, T. Q.; Liang, L.; Leng, K.; Abdelwahab, I.; Wang, L. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 2020, 11, 1434.

27

Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater. 2018, 30, 1705454.

28

Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.

29

Zhou, W. Q.; Liu, Y.; Teo, W. L.; Chen, B.; Jin, F. C.; Zhang, L. Y.; Zeng, Y. F.; Zhao, Y. L. Construction of a sandwiched MOF@COF composite as a size-selective catalyst. Cell Rep. Phys. Sci. 2020, 1, 100272.

30

Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Li, J. R.; Zhou, H. C. Modular total synthesis in reticular chemistry. J. Am. Chem. Soc. 2020, 142, 3069–3076.

31

Wu, M. X.; Wang, Y.; Zhou, G. H.; Liu, X. M. Sparks from different worlds: Collaboration of MOFs and COFs. Coord. Chem. Rev. 2021, 430, 213735.

32

Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

33

Park, H.; Kwon, O.; Kim, J. Computational identification of connected MOF@COF materials. J. Phys. Chem. C 2021, 125, 5897–5903.

34

Chen, Z. M.; Li, X. L.; Yang, C. Q.; Cheng, K. P.; Tan, T. W.; Lv, Y. Q.; Liu, Y. Hybrid porous crystalline materials from metal organic frameworks and covalent organic frameworks. Adv. Sci. 2021, 8, 2101883.

35

Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adsorption and detection of hazardous trace gases by metal-organic frameworks. Adv. Mater. 2018, 30, 1704679.

36

Wang, H.; Lustig, W. P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756.

37

Dou, Y. B.; Grande, C.; Kaiser, A.; Zhang, W. J. Highly structured metal-organic framework nanofibers for methane storage. Sci. China Mater. 2021, 64, 1742–1750.

38

Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.

39

Hosono, N.; Uemura, T. Metal-organic frameworks for macromolecular recognition and separation. Matter 2020, 3, 652–663.

40

Gao, M. Y.; Song, B. Q.; Sensharma, D.; Zaworotko, M. J. Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat 2021, 2, 38–55.

41

Chen, L. Y.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89.

42

Peng, Y.; Yang, W. S. Metal-organic framework nanosheets: A class of glamorous low-dimensional materials with distinct structural and chemical natures. Sci. China Chem. 2019, 62, 1561–1575.

43

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

44

Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.

45

Shi, W. J.; Zeng, L. Z.; Cao, L. Y.; Huang, Y.; Wang, C.; Lin, W. B. Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Res. 2021, 14, 473–478.

46

Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, 2007442.

47

Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

48

Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.

49

Wang, Q.; Shang, L.; Sun-Waterhouse, D.; Zhang, T. R.; Waterhouse, G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat 2021, 2, 154–175.

50

Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.

51

Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.

52

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

53

Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

54

Zhang, J. H.; Yang, W.; Zhang, M.; Wang, H. J.; Si, R.; Zhong, D. C.; Lu, T. B. Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy 2021, 80, 105542.

55

Chen, Y. J.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018, 140, 5678–5681.

56

Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

57

Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365.

58

Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355.

59
Teo, W. L.; Liu, J. W.; Zhou, W. Q.; Zhao, Y. L. Facile preparation of antibacterial MOF-fabric systems for functional protective wearables. SmartMat, in press, DOI: 10.1002/smm2.1046.https://doi.org/10.1002/smm2.1046
DOI
60

He, J.; Xu, J. L.; Yin, J. C.; Li, N.; Bu, X. H. Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci. China Mater. 2019, 62, 1655–1678.

61

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

62

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

63

Qin, Y. T.; Guo, J.; Zhao, M. T. Metal-organic framework-based solid acid materials for biomass upgrade. Trans. Tianjin Univ. 2021, 27, 434–449.

64

Ren, X. H.; Liao, G. C.; Li, Z. J.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781.

65

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

66

Burtch, N. C.; Heinen, J.; Bennett, T. D.; Dubbeldam, D.; Allendorf, M. D. Mechanical properties in metal-organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 2018, 30, 1704124.

67

Song, Y. P.; Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.

68

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

69

Zhong, X.; Liu, Y. X.; Liang, W.; Zhu, Y. L.; Hu, B. W. Construction of core−shell MOFs@COF hybrids as a platform for the removal of UO22+ and Eu3+ ions from solution. ACS Appl. Mater. Interfaces 2021, 13, 13883–13895.

70

Firoozi, M.; Rafiee, Z.; Dashtian, K. New MOF/COF hybrid as a robust adsorbent for simultaneous removal of auramine O and rhodamine B dyes. ACS Omega 2020, 5, 9420–9428.

71

Fu, J. R.; Das, S.; Xing, G. L.; Ben, T.; Valtchev, V.; Qiu, S. L. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. Soc. 2016, 138, 7673–7680.

72

Li, W. T.; Shi, W.; Hu, Z. J.; Yang, T.; Chen, M. L.; Zhao, B.; Wang, J. H. Fabrication of magnetic Fe3O4@metal organic framework@covalent organic framework composite and its selective separation of trace copper. Appl. Surf. Sci. 2020, 530, 147254.

73

Das, S.; Ben, T.; Qiu, S. L.; Valtchev, V. Two-dimensional COF–three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Interfaces 2020, 12, 52899–52907.

74

Rafiee, Z. Fabrication of efficient Zn-MOF/COF catalyst for the knoevenagel condensation reaction. J. Iran. Chem. Soc. 2021, 18, 2657–2664.

75

Rahmati, E.; Rafiee, Z. Synthesis of Co-MOF/COF nanocomposite: Application as a powerful and recoverable catalyst in the knoevenagel reaction. J. Porous Mater. 2021, 28, 19–27.

76

Xue, K. H.; He, R.; Yang, T. L.; Wang, J.; Sun, R. R.; Wang, L.; Yu, X. L.; Omeoga, U.; Pi, S. F.; Yang, T. et al. MOF-based In2S3-X2S3 (X = Bi; Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 2019, 493, 41–54.

77

Lv, S. W.; Liu, J. M.; Li, C. Y.; Zhao, N.; Wang, Z. H.; Wang, S. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere 2020, 243, 125378.

78

Zhang, S. H.; Xia, W.; Yang, Q.; Valentino Kaneti, Y.; Xu, X. T.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A.; Na, J.; Tang, J. et al. Core–shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 2020, 396, 125154.

79

Cui, K. X.; Zhong, W. F.; Li, L. Y.; Zhuang, Z. Y.; Li, L. Y.; Bi, J. H.; Yu, Y. Well-defined metal nanoparticles@covalent organic framework yolk-shell nanocages by ZIF-8 template as catalytic nanoreactors. Small 2019, 15, 1804419.

80

Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

81

Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

82

Zhuang, G. L.; Gao, Y. F.; Zhou, X.; Tao, X. Y.; Luo, J. M.; Gao, Y. J.; Yan, Y. L.; Gao, P. Y.; Zhong, X.; Wang, J. G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255–1264.

83

Zhang, H. W.; Zhu, Q. Q.; Yuan, R. R.; He, H. M. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B:Chem. 2021, 329, 129144.

84

Liu, X. H.; Zhang, S. H.; Feng, G. L.; Wu, Z. G.; Wang, D.; Albaqami, M. D.; Zhong, B. H.; Chen, Y. X.; Guo, X. D.; Xu, X. T. et al. Core–shell MOF@COF motif hybridization: Selectively functionalized precursors for titanium dioxide nanoparticle-embedded nitrogen-rich carbon architectures with superior capacitive deionization performance. Chem. Mater. 2021, 33, 1657–1666.

85

Wang, X. Y.; Yin, H. Q.; Yin, X. B. MOF@COFs with strong multiemission for differentiation and ratiometric fluorescence detection. ACS Appl. Mater. Interfaces 2020, 12, 20973–20981.

86

Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. A titanium-organic framework: Engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 2017, 7, 338–342.

87

Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.; Hardcastle, K. I.; Hill, C. L. A multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 2011, 133, 16839–16846.

88

Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.

89

Zhang, Z.; Liu, Y. W.; Tian, H. R.; Li, X. H.; Liu, S. M.; Lu, Y.; Sun, Z. X.; Liu, T. B.; Liu, S. X. Polyoxometalate-based metal-organic framework fractal crystals. Matter 2020, 2, 250–260.

90

Ma, R.; Liu, N. F.; Lin, T. T.; Zhao, T. B.; Huang, S. L.; Yang, G. Y. Anderson polyoxometalate built-in covalent organic frameworks for enhancing catalytic performances. J. Mater. Chem. A 2020, 8, 8548–8553.

91

Yu, X. Q.; Li, C. Y.; Ma, Y. C.; Li, D. H.; Li, H.; Guan, X. Y.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Micropor. Mesopor. Mater. 2020, 299, 110105.

92

Zhao, Y.; Wang, Z. F.; Gao, J.; Zhao, Z. F.; Li, X.; Wang, T.; Cheng, P.; Ma, S. Q.; Chen, Y.; Zhang, Z. J. COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale 2020, 12, 21218–21224.

93

Li, X. M.; Wang, J. Y.; Xue, F. F.; Wu, Y. C.; Xu, H. L.; Yi, T.; Li, Q. W. An imine-linked metal-organic framework as a reactive oxygen species generator. Angew. Chem., Int. Ed. 2021, 60, 2534–2540.

94

Jangir, R.; Kalita, A. C.; Kaleeswaran, D.; Gupta, S. K.; Murugavel, R. A [4+2] condensation strategy to imine-linked single-crystalline zeolite-like zinc phosphate frameworks. Chem. -Eur. J. 2018, 24, 6178–6190.

95

Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

96

Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

97

Lyu, J. F.; Zhang, X.; Chen, Z. J.; Anderson, R.; Wang, X. J.; Wasson, M. C.; Bai, P.; Guo, X. H.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Modular synthesis of highly porous Zr-MOFs assembled from simple building blocks for oxygen storage. ACS Appl. Mater. Interfaces 2019, 11, 42179–42185.

98

Arrozi, U. S. F.; Bon, V.; Krause, S.; Lübken, T.; Weiss, M. S.; Senkovska, I.; Kaskel, S. In situ imine-based linker formation for the synthesis of zirconium MOFs: A route to CO2 capture materials and ethylene oligomerization catalysts. Inorg. Chem. 2020, 59, 350–359.

99

Nguyen, K. D.; Ehrling, S.; Senkovska, I.; Bon, V.; Kaskel, S. New 1D chiral Zr-MOFs based on in situ imine linker formation as catalysts for asymmetric C–C coupling reactions. J. Catal. 2020, 386, 106–116.

100

Yuan, S.; Qin, J. S.; Su, J.; Li, B.; Li, J. L.; Chen, W. M.; Drake, H. F.; Zhang, P.; Yuan, D. Q.; Zuo, J. L. et al. Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angew. Chem., Int. Ed. 2018, 57, 12578–12583.

101

Yuan, S.; Zhang, P.; Zhang, L. L.; Garcia-Esparza, A. T.; Sokaras, D.; Qin, J. S.; Feng, L.; Day, G. S.; Chen, W. M.; Drake, H. F. et al. Exposed equatorial positions of metal centers via sequential ligand elimination and installation in MOFs. J. Am. Chem. Soc. 2018, 140, 10814–10819.

102

Feng, L.; Yuan, S.; Qin, J. S.; Wang, Y.; Kirchon, A.; Qiu, D.; Cheng, L.; Madrahimov, S. T.; Zhou, H. C. Lattice expansion and contraction in metal-organic frameworks by sequential linker reinstallation. Matter 2019, 1, 156–167.

103

Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côté, A. P.; Kim, J.; Yaghi, O. M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118.

104

Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 2007, 129, 12914–12915.

105

El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

106

Kong, X. J.; He, T.; Zhang, Y. Z.; Wu, X. Q.; Wang, S. N.; Xu, M. M.; Si, G. R.; Li, J. R. Constructing new metal-organic frameworks with complicated ligands from “one-pot” in situ reactions. Chem. Sci. 2019, 10, 3949–3955.

107

Dietrich-Buchecker, C.; Sauvage, J. P. Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. Tetrahedron 1990, 46, 503–512.

108

Campbell, V. E.; de Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.; Nitschke, J. R. Cascading transformations within a dynamic self-assembled system. Nat. Chem. 2010, 2, 684–687.

109

Zhao, Y. B.; Guo, L.; Gándara, F.; Ma, Y. H.; Liu, Z.; Zhu, C. H.; Lyu, H.; Trickett, C. A.; Kapustin, E. A.; Terasaki, O. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 13166–13172.

110

Liu, Y. Z.; Ma, Y. H.; Yang, J. J.; Diercks, C. S.; Tamura, N.; Jin, F. Y.; Yaghi, O. M. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J. Am. Chem. Soc. 2018, 140, 16015–16019.

111

Liu, Y. Z.; Diercks, C. S.; Ma, Y. H.; Lyu, H.; Zhu, C. H.; Alshmimri, S. A.; Alshihri, S.; Yaghi, O. M. 3D covalent organic frameworks of interlocking 1D square ribbons. J. Am. Chem. Soc. 2019, 141, 677–683.

112

Xu, H. S.; Luo, Y.; See, P. Z.; Li, X.; Chen, Z. X.; Zhou, Y.; Zhao, X. X.; Leng, K.; Park, I. H.; Li, R. L. et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks (COFs). Angew. Chem., Int. Ed. 2020, 59, 11527–11532.

113

Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

114
Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal-organic frameworks. SmartMat, in press, DOI: 10.1002/smm2.1047.https://doi.org/10.1002/smm2.1047
DOI
115

Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

116
Pan, T.; Khalil, I. E.; Xu, Z. L.; Li, H. F.; Zhang, X. L.; Xiao, G. W.; Zhang, W. N.; Shen, Y.; Huo, F. W. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction. Nano Res., in press, DOI: 10.1007/s12274-021-3621-7.https://doi.org/10.1007/s12274-021-3621-7
DOI
117

Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133.

118

Kalaj, M.; Bentz, K. C.; Ayala, S. Jr.; Palomba, J. M.; Barcus, K. S.; Katayama, Y.; Cohen, S. M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020, 120, 8267–8302.

119

Li, T.; Sullivan, J. E.; Rosi, N. L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc. 2013, 135, 9984–9987.

120

Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

121

Tan, J.; Namuangruk, S.; Kong, W. F.; Kungwan, N.; Guo, J.; Wang, C. C. Manipulation of amorphous-to-crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem., Int. Ed. 2016, 55, 13979–13984.

122

Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces 2017, 9, 7481–7488.

123

Li, Y.; Yang, C. X.; Yan, X. P. Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem. Commun. 2017, 53, 2511–2514.

124

Cai, L. H.; Hu, C. L.; Liu, S. N.; Zhou, Y.; Pang, M. L.; Lin, J. A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. Sci. China Mater. 2021, 64, 488–497.

125

Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

126

Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

127

Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon-Masseron, A.; Patarin, J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Micropor. Mesopor. Mater. 2012, 157, 75–81.

128

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

129

Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

130

Peng, H. J.; Raya, J.; Richard, F.; Baaziz, W.; Ersen, O.; Ciesielski, A.; Samori, P. Synthesis of robust MOFs@COFs porous hybrid materials via an aza-Diels-Alder reaction: Towards high-performance supercapacitor materials. Angew. Chem., Int. Ed. 2020, 59, 19602–19609.

131

Dibble, D. J.; Umerani, M. J.; Mazaheripour, A.; Park, Y. S.; Ziller, J. W.; Gorodetsky, A. A. An aza-diels-aalder route to polyquinolines. Macromolecules 2015, 48, 557–561.

132

Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

133

Sun, D. R.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core–shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater. 2018, 28, 1707110.

134

Cai, M. K.; Li, Y. L.; Liu, Q. L.; Xue, Z. Q.; Wang, H. P.; Fan, Y. N.; Zhu, K. L.; Ke, Z. F.; Su, C. Y.; Li, G. Q. One-step construction of hydrophobic MOFs@COFs core-shell composites for heterogeneous selective catalysis. Adv. Sci. 2019, 6, 1802365.

135

Gao, M. L.; Qi, M. H.; Liu, L.; Han, Z. B. An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization-Knoevenagel condensation reaction. Chem. Commun. 2019, 55, 6377–6380.

136

Cheng, Y. D.; Ying, Y. P.; Zhai, L. Z.; Liu, G. L.; Dong, J. Q.; Wang, Y. X.; Christopher, M. P.; Long, S. C.; Wang, Y. X.; Zhao, D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019, 573, 97–106.

137

Garzón-Tovar, L.; Pérez-Carvajal, J.; Yazdi, A.; Hernández-Muñoz, J.; Tarazona, P.; Imaz, I.; Zamora, F.; Maspoch, D. A MOF@COF composite with enhanced uptake through interfacial pore generation. Angew. Chem., Int. Ed. 2019, 58, 9512–9516.

138

Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589–20595.

139

Liu, X. K.; Hu, M. Y.; Wang, M. H.; Song, Y. P.; Zhou, N.; He, L. H.; Zhang, Z. H. Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens. Bioelectron. 2019, 123, 59–68.

140
Zhou, N.; Ma, Y. S.; Hu, B.; He, L. H.; Wang, S. J.; Zhang, Z. H.; Lu, S. Y. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens. Bioelectron. 2019, 127, 92–100.https://doi.org/10.1016/j.bios.2018.12.024
DOI
141

Dang, Q.; Huang, H. L.; Li, L. Y.; Lyu, X. L.; Zhong, S. H.; Yu, Y.; Xu, D. S. Yolk–shell-structured covalent organic frameworks with encapsulated metal-organic frameworks for synergistic catalysis. Chem. Mater. 2021, 33, 5690–5699.

142

Fan, H. W.; Peng, M. H.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 2021, 12, 38.

143

Sun, W. W.; Tang, X. X.; Yang, Q. S.; Xu, Y.; Wu, F.; Guo, S. Y.; Zhang, Y. F.; Wu, M. H.; Wang, Y. Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv. Mater. 2019, 31, 1903176.

144

Li, F.; Wang, D. K.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B Environ. 2019, 243, 621–628.

145

DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650.

146

Burtch, N.; Jasuja, H.; Walton, K. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

147

Xu, S. S.; Guo, X. Y.; Qiao, Z. H.; Huang, H. L.; Zhong, C. L. Methyl-shield Cu-BTC with high water stability through one-step synthesis and in situ functionalization. Ind. Eng. Chem. Res. 2020, 59, 12451–12457.

148

Madden, D. G.; Albadarin, A. B.; O’Nolan, D.; Cronin, P.; Perry IV, J. J.; Solomon, S.; Curtin, T.; Khraisheh, M.; Zaworotko, M. J.; Walker, G. M. Metal-organic material polymer coatings for enhanced gas sorption performance and hydrolytic stability under humid conditions. ACS Appl. Mater. Interfaces 2020, 12, 33759–33764.

149

Yang, S. L.; Peng, L.; Syzgantseva, O. A.; Trukhina, O.; Kochetygov, I.; Justin, A.; Sun, D. T.; Abedini, H.; Syzgantseva, M. A.; Oveisi, E. et al. Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 2020, 142, 13415–13425.

150

Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981.

151

DeCoste, J. B.; Weston, M. H.; Fuller, P. E.; Tovar, T. M.; Peterson, G. W.; LeVan, M. D.; Farha, O. K. Metal-organic frameworks for oxygen storage. Angew. Chem., Int. Ed. 2014, 53, 14092–14095.

152

Yue, B.; Liu, J. H.; Li, G. L.; Wu, Y. N. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid-phase extraction of four endocrine-disrupting chemicals from milk samples. Rapid Commun. Mass Spectrom. 2020, 34, e8909.

153

Liu, J. C.; Li, G. L.; Wu, D.; Yu, Y. X.; Chen, J.; Wu, Y. N. Facile preparation of magnetic covalent organic framework-metal organic framework composite materials as effective adsorbents for the extraction and determination of sedatives by high-performance liquid chromatography/tandem mass spectrometry in meat samples. Rapid Commun. Mass Spectrom. 2020, 34, e8742.

154

Chen, Z. P.; Yu, C.; Xi, J. B.; Tang, S.; Bao, T.; Zhang, J. A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim. Acta 2019, 186, 393.

155

Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Daemen, L.; Cheng, Y. Q.; Ramirez-Cuesta, A. J.; Feng, P. Y. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 2016, 7, 13645.

156

Zhai, Q. G.; Bu, X. H.; Zhao, X.; Li, D. S.; Feng, P. Y. Pore space partition in metal-organic frameworks. Acc. Chem. Res. 2017, 50, 407–417.

157

Godfrey, H. G. W.; da Silva, I.; Briggs, L.; Carter, J. H.; Morris, C. G.; Savage, M.; Easun, T. L.; Manuel, P.; Murray, C. A.; Tang, C. C. et al. Ammonia storage by reversible host−guest site exchange in a robust metal-organic framework. Angew. Chem., Int. Ed. 2018, 57, 14778–14781.

158

Rieth, A. J.; Dincă, M. Controlled gas uptake in metal-organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 2018, 140, 3461–3466.

159

Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 2014, 50, 13825–13828.

160

Das, S.; Ben, T. A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H2/CO2 separation selectivity. Dalton Trans. 2018, 47, 7206–7212.

161

Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.

162

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

163

Haug, W. K.; Moscarello, E. M.; Wolfson, E. R.; McGrier, P. L. The luminescent and photophysical properties of covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 839–864.

164

Dong, J. Q.; Han, X.; Liu, Y.; Li, H. Y.; Cui, Y. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 13722–13733.

165

Zhi, Y. F.; Wang, Z. R.; Zhang, H. L.; Zhang, Q. C. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 2020, 16, 2001070.

166

Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.

167

Qiu, X. Y.; Zhang, Y.; Zhu, Y. F.; Long, C.; Su, L. N.; Liu, S. Q.; Tang, Z. Y. Applications of nanomaterials in asymmetric photocatalysis: Recent progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2001731.

168

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

169

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

170

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

171

Hu, H. H.; Wang, Z. Y.; Cao, L. Y.; Zeng, L. Z.; Zhang, C. K.; Lin, W. B.; Wang, C. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.

172

Gong, Y. N.; Mei, J. H.; Liu, J. W.; Huang, H. H.; Zhang, J. H.; Li, X. K.; Zhong, D. C.; Lu, T. B. Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Appl. Catal. B:Environ. 2021, 292, 120156.

173

Zheng, M. X.; Yao, C.; Xu, Y. H. Fe3O4 nanoparticles decorated with UiO-66 metal-organic framework particles and encapsulated in a triazine-based covalent organic framework matrix for photodegradation of anionic dyes. ACS Appl. Nano Mater. 2020, 3, 11307–11314.

174

He, S. J.; Rong, Q. F.; Niu, H. Y.; Cai, Y. Q. Platform for molecular-material dual regulation: A direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B:Environ. 2019, 247, 49–56.

175

Zhao, J.; Jin, B.; Peng, R. F. New core−shell hybrid material Ir-MOF3@COF-LZU1 for highly efficient visible-light photocatalyst degrading nitroaromatic explosives. Langmuir 2020, 36, 5665–5670.

176

Li, L. P.; Sun, X. F.; Qiu, X. Q.; Xu, J. X.; Li, G. S. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate. Inorg. Chem. 2008, 47, 8839–8846.

177

Zhu, C. S.; Zhang, L.; Jiang, B.; Zheng, J. T.; Hu, P.; Li, S. J.; Wu, M. B.; Wu, W. T. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99–108.

178

Song, Y.; Li, Z.; Zhu, Y. Y.; Feng, X. Y.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. B. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J. Am. Chem. Soc. 2019, 141, 12219–12223.

179

Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.

180

Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

181

Chen, Y.; Yang, D.; Shi, B. B.; Dai, W.; Ren, H. J.; An, K.; Zhou, Z. Y.; Zhao, Z. F.; Wang, W. J.; Jiang, Z. Y. In situ construction of hydrazone-linked COF-based core−shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 7724–7732.

182

Ghosh, S.; Li, X. Q.; Stepanenko, V.; Würthner, F. Control of H- and J-type π stacking by peripheral alkyl chains and self-sorting phenomena in perylene bisimide homo- and heteroaggregates. Chem. -Eur. J. 2008, 14, 11343–11357.

183

Wang, J.; Liu, D.; Zhu, Y. F.; Zhou, S. Y.; Guan, S. Y. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B:Environ. 2018, 231, 251–261.

184

Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew. Chem., Int. Ed. 2018, 57, 5708–5713.

185

Xia, W.; Li, J. J.; Wang, T.; Song, L.; Guo, H.; Gong, H.; Jiang, C.; Gao, B.; He, J. P. The synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from a 2D MOF and their enhanced performance in the oxygen reduction reaction. Chem. Commun. 2018, 54, 1623–1626.

186

Polat, V.; Bozcali, E.; Uygun, T.; Opan, S.; Karakaya, O. Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction. Acta Cardiol. 2016, 71, 191–197.

187

Yola, M. L.; Atar, N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core−shell Ti-MOF@COFs composites. Nanoscale 2020, 12, 19824–19832.

188

Chen, Z. P.; He, Z. L.; Luo, X. G.; Wu, F. S.; Tang, S.; Zhang, J. Synthesis of MOF@COF hybrid magnetic adsorbent for microextraction of sulfonamides in food and environmental samples. Food Anal. Methods 2020, 13, 1346–1356.

189

Zheng, R. J.; Yang, Y. C.; Yang, C.; Xia, Y. Core-shell MOF@COFs used as an adsorbent and matrix for the detection of nonsteroidal anti-inflammatory drugs by MALDI-TOF MS. Microchim. Acta 2021, 188, 179.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2021
Revised: 22 September 2021
Accepted: 05 November 2021
Published: 17 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21905195 and 22103055), the Natural Science Foundation of Tianjin City (No. 20JCYBJC00800) and PEIYANG Young Scholars Program of Tianjin University (No. 2020XRX-0023).

Return