Journal Home > Volume 15 , Issue 4

Porous laminar membranes hold great promise to realize ultrafast ion transfer if efficient and stable transfer channels are constructed in vertical direction. Here, metal-organic framework (MOF) nanosheets bearing imidazole molecules in the pores were designed as building blocks to assemble free-standing MOF laminar membrane. Then, Nafion chains were threaded into the pores induced by electrostatic attraction from imidazole molecules by slowly filtering dilute Nafion solution. We demonstrate that the threaded Nafion chains lock adjacent MOF nanosheets, affording highly enhanced structural stability to the resultant laminar membrane with almost no water swelling. Significantly, abundant acid-base pairs are formed in the pores along Nafion chains, working as efficient, continuous conduction pathways in vertical direction. Proton conductivities as high as 110 and 46 mS·cm–1 are obtained by this membrane under 100% and 40% relative humidity (RH), respectively, which are two orders of magnitude higher than that of pristine MOF membrane. The conductivity under low humidity (40% RH) is even over 2 times higher than that of commercial Nafion membrane, generating the maximum power density of 1,100 mW·cm–2 in hydrogen fuel cell (vs. 291 mW·cm–2 of Nafion membrane). Besides, the influence of water state on proton transfer in confined space is investigated in detail.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction

Show Author's information Yan Wang1Hexiang Gao1Wenjia Wu1( )Zhuofan Zhou1Zhiwei Yang1Jingtao Wang1,2,3( )Yecheng Zou4
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong DongYue Polymer Material Co. Ltd, Zibo 256400, China

Abstract

Porous laminar membranes hold great promise to realize ultrafast ion transfer if efficient and stable transfer channels are constructed in vertical direction. Here, metal-organic framework (MOF) nanosheets bearing imidazole molecules in the pores were designed as building blocks to assemble free-standing MOF laminar membrane. Then, Nafion chains were threaded into the pores induced by electrostatic attraction from imidazole molecules by slowly filtering dilute Nafion solution. We demonstrate that the threaded Nafion chains lock adjacent MOF nanosheets, affording highly enhanced structural stability to the resultant laminar membrane with almost no water swelling. Significantly, abundant acid-base pairs are formed in the pores along Nafion chains, working as efficient, continuous conduction pathways in vertical direction. Proton conductivities as high as 110 and 46 mS·cm–1 are obtained by this membrane under 100% and 40% relative humidity (RH), respectively, which are two orders of magnitude higher than that of pristine MOF membrane. The conductivity under low humidity (40% RH) is even over 2 times higher than that of commercial Nafion membrane, generating the maximum power density of 1,100 mW·cm–2 in hydrogen fuel cell (vs. 291 mW·cm–2 of Nafion membrane). Besides, the influence of water state on proton transfer in confined space is investigated in detail.

Keywords: structural stability, MOF nanosheet, Nafion-threaded MOF laminar membrane, proton conductivity, hydrogen fuel cell

References(57)

1

Liu, G. P.; Jin, W. Q.; Xu, N. P. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem., Int. Ed. 2016, 55, 13384–13397.

2

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

3

Zhang, W. H.; Yin, M. J.; Zhao, Q.; Jin, C. G.; Wang, N. X.; Ji, S. L.; Ritt, C. L.; Elimelech, M.; An, Q. F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343.

4

Xie, X. Q.; Chen, C.; Zhang, N.; Tang, Z. R.; Jiang, J. J.; Xu, Y. J. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2019, 2, 856–862.

5

Wang, J. T.; Chen, P. P.; Shi, B. B.; Guo, W. W.; Jaroniec, M.; Qiao, S. Z. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew. Chem., Int. Ed. 2018, 57, 6814–6818.

6

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

7

Tian, M.; Pei, F.; Yao, M. S.; Fu, Z. H.; Lin, L. L.; Wu, G. D.; Xu, G.; Kitagawa, H.; Fang, X. L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Stor. Mater. 2019, 21, 14–21.

8

Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

9

Qian, X. T.; Chen, L.; Yin, L. C.; Liu, Z. B.; Pei, S. F.; Li, F.; Hou, G. J.; Chen, S. M.; Song, L.; Thebo, K. H. et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600.

10

Cao, L.; Wu, H.; Cao, Y.; Fan, C. Y.; Zhao, R.; He, X. Y.; Yang, P. F.; Shi, B. B.; You, X. D.; Jiang, Z. Y. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 2020, 32, 2005565.

11

Karim, M. R.; Hatakeyama, K.; Matsui, T.; Takehira, H.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Akutagawa, T.; Nakamura, T.; Noro, S. I. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100.

12

Chang, D. W.; Baek, J. B. Charge transport in graphene oxide. Nano Today 2017, 17, 38–53.

13

Cao, L.; Wu, H.; Yang, P. F.; He, X. Y.; Li, J. Z.; Li, Y.; Xu, M. Z.; Qiu, M.; Jiang, Z. Y. Graphene oxide-based solid electrolytes with 3D prepercolating pathways for efficient proton transport. Adv. Funct. Mater. 2018, 28, 1804944.

14

Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

15

Hatakeyama, K.; Karim, M. R.; Ogata, C.; Tateishi, H.; Funatsu, A.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Proton conductivities of graphene oxide nanosheets: Single, multilayer, and modified nanosheets. Angew. Chem., Int. Ed. 2014, 53, 6997–7000.

16

Bayer, T.; Selyanchyn, R.; Fujikawa, S.; Sasaki, K.; Lyth, S. M. Spray-painted graphene oxide membrane fuel cells. J. Membr. Sci. 2017, 541, 347–357.

17

Wan, S. J.; Jiang, L.; Cheng, Q. F. Design principles of high-performance graphene films: Interfaces and alignment. Matter 2020, 3, 696–707.

18

Wan, S. J; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

19

Jang, D.; Idrobo, J. C.; Laoui, T.; Karnik, R. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 2017, 11, 10042–10052.

20

Sapkota, B.; Liang, W. T.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 11, 2747.

21

Hatakeyama, K.; Karim, M. R.; Ogata, C.; Tateishi, H.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Optimization of proton conductivity in graphene oxide by filling sulfate ions. Chem. Commun. 2014, 50, 14527–14530.

22

Wang, J. T; Liu, Y. R.; Dang, J. C.; Zhou, G. L.; Wang, Y.; Zhang, Y. F.; Qu, L. B.; Wu, W. J. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978.

23

Kang, Y.; Xia, Y.; Wang, H. T.; Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 2019, 29, 1902014.

24

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

25

Rodríguez-San-Miguel D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.

26

Nicks, J.; Boer, S. A.; White, N. G.; Foster, J. A. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem. Sci. 2021, 12, 3322–3327.

27

Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

28

Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850.

29

Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

30

Chi, C. L.; Wang, X. R.; Peng, Y. W.; Qian, Y. H.; Hu, Z. G.; Dong, J. Q.; Zhao, D. Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 2016, 28, 2921–2927.

31

Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

32

Wang, D.; Wang, Z. G.; Wang, L.; Hu, L.; Jin, J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale 2015, 7, 17649–17652.

33

Liang, H. Q.; Guo, Y.; Shi, Y. S.; Peng, X. S.; Liang, B.; Chen, B. L. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem., Int. Ed. 2020, 59, 7732–7737.

34

Li, P. P.; Li, Z. Y.; Guo, Y.; Deng, Z.; Wang, X. B.; Ma, X.; Peng, X. S. Ag-DNA@ZIF-8 membrane: A proton conductive photoswitch. Appl. Mater. Today 2020, 20, 100761.

35

Guo, Y.; Peng, X. S. Mass transport through metal organic framework membranes. Sci. China Mater. 2019, 62, 25–42.

36

Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155.

37

Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877–883.

38

Presiado, I.; Lal, J.; Mamontov, E.; Kolesnikov, A. I.; Huppert, D. Fast proton hopping detection in ice Ih by quasi-elastic neutron scattering. J. Phys. Chem. C 2011, 115, 10245–10251.

39

Jian, M. P.; Qiu, R. S.; Xia, Y.; Lu, J.; Chen, Y.; Gu, Q. F.; Liu, R. P.; Hu, C. Z.; Qu, J. H.; Wang, H. T. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 2020, 6, eaay3998.

40

Howarth, A. J.; Liu, Y. Y; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

41

Tarokh, A.; Karan, K.; Ponnurangam, S. Atomistic MD study of Nafion dispersions: Role of solvent and counterion in the aggregate structure, ionic clustering, and acid dissociation. Macromolecules 2020, 53, 288–301.

42

Welch, C.; Labouriau, A.; Hjelm, R.; Orler, B.; Johnston, C.; Kim, Y. S. Nafion in dilute solvent systems: Dispersion or solution? ACS Macro Lett. 2012, 1, 1403–1407.

43

Lin, H. L.; Yu, T. L.; Huang, C. H.; Lin, T. L. Morphology study of Nafion membranes prepared by solutions casting. J. Polym. Sci. Part B:Polym. Phys. 2005, 43, 3044–3057.

44

Lim, Y.; Lee, S.; Jang, H.; Hossain, M. A.; Gwak, G.; Ju, H.; Kim, D.; Kim, W. Sulfonated poly(ether sulfone) electrolytes structured with mesonaphthobifluorene graphene moiety for PEMFC. Int. J. Hydrog. Energy 2014, 39, 1532–1538.

45

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

46

Liu, Y. W.; Yang, X.; Miao, J.; Tang, Q.; Liu, S. M.; Shi, Z.; Liu, S. X. Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in three orthogonal directions. Chem. Commun. 2014, 50, 10023–10026.

47

Yuan, S.; Huang, L.; Huang, Z. H.; Sun, D.; Qin, J. S.; Feng, L.; Li, J. L.; Zou, X. D.; Cagin, T.; Zhou, H. C. Continuous variation of lattice dimensions and pore sizes in metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 4732–4738.

48

Li, J.; Wang, J.; Wu, Z. Z.; Tao, S. S.; Jiang, D. L. Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks via confinement and activation. Angew. Chem. 2021, 133, 13028–13033.

49

Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831–836.

50

Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N. A.; Maurin, G.; Llewellyn, P. L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P. et al. An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. 2007, 19, 2246–2251.

51

Wu, B.; Ge, L.; Lin, X. C.; Wu, L.; Luo, J. Y.; Xu, T. W. Immobilization of N-(3-aminopropyl)-imidazole through MOFs in proton conductive membrane for elevated temperature anhydrous applications. J. Membr. Sci. 2014, 458, 86–95.

52

Liu, J. T.; Han, G.; Zhao, D. L.; Lu, K. J.; Gao, J.; Chung, T. S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 2020, 6, eabb1110.

53

Jheng, L. C.; Huang, C. Y.; Hsu, S. L. C. Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2013, 38, 1524–1534.

54

Wolfart, F.; Hryniewicz, B. M.; Marchesi, L. F.; Orth, E. S.; Dubal, D. P.; Gómez-Romero, P.; Vidotti, M. Direct electrodeposition of imidazole modified poly(pyrrole) copolymers: Synthesis, characterization and supercapacitive properties. Electrochim. Acta 2017, 243, 260–269.

55

Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

56

Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Hammond, P. T.; Park, H. Innovative polymer nanocomposite electrolytes: Nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 2011, 5, 5167–5174.

57

Lin, J. L.; Dang, J. C.; Zhou, G. L.; Wu, W. J.; Liu, Y. R.; Zhang, Y. F.; Wang, J. T. Sheet-dot-framework membrane towards efficient proton conduction and outstanding stability. J. Mater. Chem. A 2020, 8, 10822–10830.

File
12274_2021_3925_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 August 2021
Revised: 15 September 2021
Accepted: 30 September 2021
Published: 20 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. U2004199), Excellent Youth Foundation of Henan Province (No. 202300410373), China Postdoctoral Science Foundation (Nos. 2021T140615 and 2020M672281), Natural Science Foundation of Henan Province (No. 212300410285), and Young Talent Support Project of Henan Province (No. 2021HYTP028). Center for advanced analysis and computational science, Zhengzhou University is also highly acknowledged.

Return