Journal Home > Volume 15 , Issue 4

Photocatalytic reduction of U(VI) represents a novel and effective manner for the removal of U(VI) pollutant from radioactive wastewater. Herein, we successfully incorporated hydrogen into VO2 nanosheets, which strengthened the interaction between VO2 and U(VI), thereby achieving a highly active and stable photocatalyst for U(VI) reduction. With the increase of H content in hydric VO2 (Hx-VO2) nanosheets, the bandgap shrank from 2.29 to 1.66 eV, whereas the position of conduction bands remained more negative than the reduction potential of U(VI)/U(IV) (0.41 V vs. NHE). When irradiated by simulated sunlight, the U(VI) removal efficiency over H0.613-VO2 nanosheets reached up to 95.4% within 90 min, which largely outperformed 28.3% of pristine VO2 nanosheets. The mechanistic study demonstrated that the hydroxylated surface gave rise to the balanced O confinement sites in VO2 (011), leading to the stabilized adsorption configuration and increased binding strength of UO22+ on Hx-VO2 nanosheets.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction

Show Author's information Huanhuan Liu1,§Jia Lei1,§Jiali Chen1Ye Li1Changyao Gong1Shangjie Yang1Yamin Zheng2Ning Lu2Yan Liu2( )Wenkun Zhu1( )Rong He1( )
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Huanhuan Liu and Jia Lei contributed equally to this work.

Abstract

Photocatalytic reduction of U(VI) represents a novel and effective manner for the removal of U(VI) pollutant from radioactive wastewater. Herein, we successfully incorporated hydrogen into VO2 nanosheets, which strengthened the interaction between VO2 and U(VI), thereby achieving a highly active and stable photocatalyst for U(VI) reduction. With the increase of H content in hydric VO2 (Hx-VO2) nanosheets, the bandgap shrank from 2.29 to 1.66 eV, whereas the position of conduction bands remained more negative than the reduction potential of U(VI)/U(IV) (0.41 V vs. NHE). When irradiated by simulated sunlight, the U(VI) removal efficiency over H0.613-VO2 nanosheets reached up to 95.4% within 90 min, which largely outperformed 28.3% of pristine VO2 nanosheets. The mechanistic study demonstrated that the hydroxylated surface gave rise to the balanced O confinement sites in VO2 (011), leading to the stabilized adsorption configuration and increased binding strength of UO22+ on Hx-VO2 nanosheets.

Keywords: uranium, confinement, VO2 nanosheets , hydroxylated surface, photoreduction

References(56)

1

Li, J.; Li, B. Y.; Shen, N. N.; Chen, L. X.; Guo, Q.; Chen, L.; He, L. W.; Dai, X.; Chai, Z. F.; Wang, S. A. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 cleanup from alkaline nuclear waste. ACS Cent. Sci. 2021, 7, 1441–1450.

2

Li, J.; Chen, L.; Shen, N. N.; Xie, R. Z.; Sheridan, M. V.; Chen, X. J.; Sheng, D. P.; Zhang, D.; Chai, Z. F.; Wang, S. A. Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste. Sci. China Chem. 2021, 64, 1251–1260.

3

He, L. W.; Chen, L.; Dong, X. L.; Zhang, S. T.; Zhang, M. X.; Dai, X.; Liu, X. J.; Lin, P.; Li, K. F.; Chen, C. L. et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem. 2021, 7, 699–714.

4

Li, W.; Xia, F.; Qu, J.; Li, P.; Chen, D. H.; Chen, Z.; Yu, Y.; Lu, Y.; Caruso, R. A.; Song, W. G. Versatile inorganic-organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Res. 2014, 7, 903–916.

5

Wang, X. M.; Dai, X.; Shi, C.; Wan, J. M.; Silver, M. A.; Zhang, L. J.; Chen, L. H.; Yi, X.; Chen, B. Z.; Zhang, D. et al. A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat. Commun. 2019, 10, 2570.

6

Xie, Y.; Chen, C. L.; Ren, X. M.; Wang, X. X.; Wang, H. Y.; Wang, X. K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234.

7

Hudry, D.; Griveau, J. C.; Apostolidis, C.; Walter, O.; Colineau, E.; Rasmussen, G.; Wang, D.; Chakravadhaluna, V. S. K.; Courtois, E.; Kübel, C. et al. Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties. Nano Res. 2014, 7, 119–131.

8

Lei, J.; Liu, H. H.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Wen, F. C.; Jiang, X. Y.; Deng, W. J.; Cui, X. D.; Duan, T. et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chem. Eng. J. 2021, 416, 129164.

9

Zhang, S.; Li, H.; Wang, S. Construction of an ion pathway boosts uranium extraction from seawater. Chem 2020, 6, 1504–1505.

10

Yu, B. X.; Zhang, L.; Ye, G.; Liu, Q. Z.; Li, J. L.; Wang, X. D.; Chen, J.; Xu, S. M.; Ma, S. Q. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Res. 2021, 14, 788–796.

11

Xiao, F. B.; Sun, Y. F.; Du, W. F.; Shi, W. H.; Wu, Y.; Liao, S. Z.; Wu, Z. Y.; Yu, R. Q. Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water. Adv. Funct. Mater. 2017, 27, 1702147.

12

Yu, S. J.; Pang, H. W.; Huang, S. Y.; Tang, H.; Wang, S. Q.; Qiu, M. Q.; Chen, Z. S.; Yang, H.; Song, G.; Fu, D. et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662.

13

Yuan, Y. H.; Yu, Q. H.; Wen, J.; Li, C. Y.; Guo, Z. H.; Wang, X. L.; Wang, N. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem., Int. Ed. 2019, 58, 11785–11790.

14

Gong, X.; Tang, L.; Zou, J.; Guo, Z. H.; Li, Y. L.; Lei, J.; Liu, H. H.; Liu, M.; Zhou, L.; Huang, P. L. et al. Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. J. Hazard. Mater. 2022, 423, 126935.

15

Ivanov, A. S.; Parker, B. F.; Zhang, Z. C.; Aguila, B.; Sun, Q.; Ma, S. Q.; Jansone-Popova, S.; Arnold, J.; Mayes, R. T.; Dai, S. et al. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nat. Commun. 2019, 10, 819.

16

Ma, C. X.; Gao, J. X.; Wang, D.; Yuan, Y. H.; Wen, J.; Yan, B. J.; Zhao, S. L.; Zhao, X. M.; Sun, Y.; Wang, X. L. et al. Sunlight polymerization of poly (amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv. Sci. 2019, 6, 1900085.

17

Sheng, G. D.; Yang, P. J.; Tang, Y. N.; Hu, Q. Y.; Li, H.; Ren, X. M.; Hu, B. W.; Wang, X. K.; Huang, Y. Y. New insights into the primary roles of diatomite in the enhanced sequestration of UO22+ by zerovalent iron nanoparticles: An advanced approach utilizing XPS and EXAFS. Appl. Catal. B:Environ. 2016, 193, 189–197.

18

Loreggian, L.; Novotny, A.; Bretagne, S. L.; Bartova, B.; Wang, Y. H.; Bernier-Latmani, R. Effect of aging on the stability of microbially reduced uranium in natural sediment. Environ. Sci. Technol. 2020, 54, 613–620.

19

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. A. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem., Int. Ed. 2019, 58, 16110–16114.

20

Wang, L.; Song, H.; Yuan, L. Y.; Li, Z. J.; Zhang, Y. J.; Gibson, J. K.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environ. Sci. Technol. 2018, 52, 10748–10756.

21

Yuan, Y. H.; Niu, B. Y.; Yu, Q. H.; Guo, X.; Guo, Z. H.; Wen, J.; Liu, T.; Zhang, H. Q.; Wang, N. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets. Angew. Chem., Int. Ed. 2020, 59, 1220–1227.

22

Hu, B. W.; Ai, Y. J.; Jin, J.; Hayat, T.; Alsaedi, A.; Zhuang, L.; Wang, X. K. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar. 2020, 2, 47–64.

23

Lu, C. H.; Zhang, P.; Jiang, S. J.; Wu, X.; Song, S. Q.; Zhu, M. S.; Lou, Z. Z.; Li, Z.; Liu, F.; Liu, Y. H. et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B:Environ. 2017, 200, 378–385.

24

Singer, D. M.; Chatman, S. M.; Ilton, E. S.; Rosso, K. M.; Banfield, J. F.; Waychunas, G. A. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environ. Sci. Technol. 2012, 46, 3811–3820.

25

Kim, Y. K.; Lee, S.; Ryu, J.; Park, H. Solar conversion of seawater uranium (VI) using TiO2 electrodes. Appl. Catal. B:Environ. 2015, 163, 584–590.

26

Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L. et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 2019, 62, 933–967.

27

Li, S. J.; Hu, Y. Z.; Shen, Z. W.; Cai, Y. W.; Ji, Z. Y.; Tan, X. L.; Liu, Z. X.; Zhao, G. X.; Hu, S. X.; Wang, X. K. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 2021, 64, 1323–1331.

28

Liang, P. L.; Yuan, L. Y.; Deng, H.; Wang, X. C.; Wang, L.; Li, Z. J.; Luo, S. Z.; Shi, W. Q. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B:Environ. 2020, 267, 118688.

29

Zhang, Y. F.; Zhu, M. Y.; Zhang, S.; Cai, Y. W.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B:Environ. 2020, 279, 119390.

30

Liu, X. N.; Du, P. H.; Pan, W. Y.; Dang, C. Y.; Qian, T. W.; Liu, H. F.; Liu, W.; Zhao, D. Y. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl. Catal. B:Environ. 2018, 231, 11–22.

31

Qiu, M. Q.; Liu, Z. X.; Wang, S. Q.; Hu, B. W. The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environ. Res. 2021, 196, 110349.

32

Li, Y.; Zou, G.; Yang, S. Y.; Wang, Z. H.; Chen, T.; Yu, X. F.; Guo, Q.; He, R.; Duan, T.; Zhu, W. K. Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater. Chem. Eng. J. 2019, 364, 139–145.

33

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

34

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

35

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

36

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

37

Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method. J. Phys. :Condens. Matter. 1997, 9, 767–808.

38

Wang, X. J.; Wang, Z. W.; Zhang, G. Z.; Jiang, J. Insight into electronic and structural reorganizations for defect-induced VO2 metal-insulator transition. J. Phys. Chem. Lett. 2017, 8, 3129–3132.

39

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192.

40

Yao, T.; Liu, L.; Xiao, C.; Zhang, X. D.; Liu, Q. H.; Wei, S. Q.; Xie, Y. Ultrathin nanosheets of half-metallic monoclinic vanadium dioxide with a thermally induced phase transition. Angew. Chem., Int. Ed. 2013, 52, 7554–7558.

41

Dashtian, K.; Ghaedi, M.; Shirinzadeh, H.; Hajati, S.; Shahbazi, S. Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO2/CuWO4 type II n-n heterojunction. Chem. Eng. J. 2018, 339, 189–203.

42

Chen, L. L.; Yang, Z. H.; Huang, Y. G. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale. 2019, 11, 13032–13039.

43

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

44

Sathiya, M.; Prakash, A. S.; Ramesha, K.; Tarascon, J. M.; Shukla, A. K. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–16299.

45

Wu, C. Z.; Feng, F.; Feng, J.; Dai, J.; Peng, L. L.; Zhao, J. Y.; Yang, J. L.; Si, C.; Wu, Z. Y.; Xie, Y. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 2011, 133, 13798–13801.

46

Baudrin, E.; Sudant, G.; Larcher, D.; Dunn, B.; Tarascon, J. M. Preparation of nanotextured VO2from vanadium oxide aerogels. Chem. Mater. 2006, 18, 4369–4374.

47

Quackenbush, N. F.; Tashman, J. W.; Mundy, J. A.; Sallis, S.; Paik, H.; Misra, R.; Moyer, J. A.; Guo, J. H.; Fischer, D. A.; Woicik, J. C. et al. Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. Nano Lett. 2013, 13, 4857–4861.

48

Quackenbush, N. F.; Paik, H.; Holtz, M. E.; Wahila, M. J.; Moyer, J. A.; Barthel, S.; Wehling, T. O.; Arena, D. A.; Woicik, J. C.; Muller, D. A. et al. Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist. Phys. Rev. B. 2017, 96, 081103(R).

49

Li, P.; Wang, J. J.; Wang, Y.; Liang, J. J.; He, B. H.; Pan, D. Q.; Fan, Q. H.; Wang, X. K. Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction. Chem. Eng. J. 2019, 365, 231–241.

50

Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Cha, Z. F.; Shi, W. Q. Enhanced photocatalytic removal of Uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.

51

Hu, B. W.; Wang, H. F.; Liu, R. R.; Qiu, M. Q. Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling. Chemosphere. 2021, 274, 129743.

52

Wang, H. H.; Guo, H.; Zhang, N.; Chen, Z. S.; Hu, B. W.; Wang, X. K. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol a: ESR, XPS, and EXAFS investigation. Environ. Sci. Technol. 2019, 53, 6454–6461.

53

Kobayashi, T.; Sun, Y. Y. L.; Prenger, K.; Jiang, D. E.; Naguib, M.; Pruski, M. Nature of terminating hydroxyl groups and intercalating water in Ti3C2Tx MXenes: A study by 1H solid-state NMR and DFT calculations. J. Phys. Chem. C. 2020, 124, 13649–13655.

54

Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142, 7514–7523.

55

Liu, C.; Hsu, P. C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H. T.; Liu, W.; Zhang, J. S.; Chu, S.; Cui, Y. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy. 2017, 2, 17007.

56

Lei, J.; Liu, H. H.; Wen, F. C.; Jiang, X. Y.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Cui, X. D.; Yang, F.; Zhu, W. K. et al. Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chem. Eng. J. 2021, 426, 130756.

File
12274_2021_3916_MOESM1_ESM.pdf (855.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 August 2021
Revised: 22 September 2021
Accepted: 29 September 2021
Published: 16 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundaiton of China (Nos. 21902130 and 21976147), Sichuan Science and Technology Program (Nos. 2020YFG0160, 2020YFG0191, 2020YFS0345, 2020JDJQ0060, and 2020JDRC0089), the project of State Key Laboratory of Environment-friendly Energy Materials in SWUST (No. 18fksy0218), research fund of SWUST for PhD (No. 18zx7149), Natural Science Foundation of Anhui province (Nos. 2008085QB81 and 2008085QA33), and the Education Department of Anhui Province Foundation (No. KJ2019A0503).

Return