Journal Home > Volume 15 , Issue 4

Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation. Herein, we firstly propose a Zn-I2 battery working at low temperature with a carbon composite material/iodine (CCM-I2) cathode, a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte. The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte, and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance. The synergies enable an efficiently reversible conversion of Zn-I2 battery even at −40 °C. Therefore, the resultant Zn-I2 battery delivers a high specific capacity of 200 mAh·g−1, which is fairly approximate to the theoretical capacity of I2 (211 mAh·g−1) and a superior cycling stability with minimal capacity fading of 0.00043% per cycle over 7,000 times under 2C at −20 °C. Furthermore, even at −40 °C, this Zn-I2 battery still exhibits a good capacity retention of 68.7% compared to the capacity at 25 °C and a rapid capacity-recover ability with elevating temperature change. Our results distinctly indicate this Zn-I2 battery can be competent for the practical application under low temperature operation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature

Show Author's information Chunlai SongZongshuai GongChong BaiFengshi CaiZhihao Yuan( )Xizheng Liu( )
School of Materials Science and Engineering, Tianjin Key Laboratory of Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin 300384, China

Abstract

Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation. Herein, we firstly propose a Zn-I2 battery working at low temperature with a carbon composite material/iodine (CCM-I2) cathode, a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte. The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte, and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance. The synergies enable an efficiently reversible conversion of Zn-I2 battery even at −40 °C. Therefore, the resultant Zn-I2 battery delivers a high specific capacity of 200 mAh·g−1, which is fairly approximate to the theoretical capacity of I2 (211 mAh·g−1) and a superior cycling stability with minimal capacity fading of 0.00043% per cycle over 7,000 times under 2C at −20 °C. Furthermore, even at −40 °C, this Zn-I2 battery still exhibits a good capacity retention of 68.7% compared to the capacity at 25 °C and a rapid capacity-recover ability with elevating temperature change. Our results distinctly indicate this Zn-I2 battery can be competent for the practical application under low temperature operation.

Keywords: low temperature, high performance, Zn-I2 battery , acetonitrile electrolyte, carbon composite material

References(41)

1

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

2

Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

3

Li, H. Z.; Firby, C. J.; Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019, 3, 2268–2278.

4

Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

5

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

6

Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 2019, 141, 6338–6344.

7

House, R. A.; Maitra, U.; Perez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

8

Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 2019, 12, 1999–2009.

9

Tang, B.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

10

Cui, J.; Guo, Z. W.; Yi, J.; Liu, X. Y.; Wu, K.; Liang, P. C.; Li, Q.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y. et al. Organic cathode materials for rechargeable zinc batteries: Mechanisms, challenges, and perspectives. ChemSusChem 2020, 13, 2160–2185.

11

Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

12

Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

13

Simonov, A.; De Baerdemaeker, T.; Boström, H. L. B.; Ríos Gómez, M. L.; Gray, H. J.; Chernyshov, D.; Bosak, A.; Bürgi, H. B.; Goodwin, A. L. Hidden diversity of vacancy networks in prussian blue analogues. Nature 2020, 578, 256–260.

14

Nai, J. W.; Lou, X. W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, 1706825.

15

Yang, Q.; Mo, F. N.; Liu, Z. X.; Ma, L. T.; Li, X. L.; Fang, D. L.; Chen, S. M.; Zhang, S. J.; Zhi, C. Y. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1901521.

16

Jiang, C. L.; Xiang, L.; Miao, S. J.; Shi, L.; Xie, D. H.; Yan, J. X.; Zheng, Z. J.; Zhang, X. M.; Tang, Y. B. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 2020, 32, 1908470.

17

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

18

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor. Mater. 2019, 20, 410–437.

19

Guo, Z. L.; Wang, T. S.; Wei, H. H.; Long, Y. Z.; Yang, C.; Wang, D.; Lang, J. L.; Huang, K.; Hussain, N.; Song, C. X. et al. Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem., Int. Ed. 2019, 58, 12569–12573.

20

Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535.

21

Zhao, Y. W.; Chen, Z.; Mo, F. N.; Wang, D. H.; Guo, Y.; Liu, Z. X.; Li, X. L.; Li, Q.; Liang, G. J.; Zhi, C. Y. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 2020, 8, 2002590.

22

Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from -70 to 150 °C. Angew. Chem., Int. Ed. 2020, 59, 14577–14583.

23

Mo, F. N.; Liang, G. L.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

24

Yang, W. H.; Du, X. F.; Zhao, J. W.; Chen, Z.; Li, J. J.; Xie, J.; Zhang, Y. J.; Cui, Z. L.; Kong, Q. Y.; Zhao, Z. M. et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 2020, 4, 1557–1574.

25

Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

26

Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548–3554.

27

Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.

28

Dong, X. L.; Lin, Y. X.; Li, P. L.; Ma, Y. Y.; Huang, J. H.; Bin, D.; Wang, Y. G.; Qi, Y.; Xia, Y. Y. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem., Int. Ed. 2019, 58, 5623–5627.

29

Dong, X. L.; Guo, Z. W.; Guo, Z. Y.; Wang, Y. G.; Xia, Y. Y. Organic batteries operated at −70 °C. Joule 2018, 2, 902–913.

30

Dong, X. L.; Yang, Y.; Wang, B. L.; Cao, Y. J.; Wang, N.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. 2020, 7, 2000196.

31

Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T.; Sprenkle, V. et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.

32

Li, Y. X.; Liu, L. J.; Li, H. X.; Cheng, F. Y.; Chen, J. Rechargeable aqueous zinc-iodine batteries: Pore confining mechanism and flexible device application. Chem. Commun. 2018, 54, 6792–6795.

33

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

34

Yu, D. L.; Kumar, A.; Nguyen, T. A.; Nazir, M. T.; Yasin, G. High-voltage and ultrastable aqueous zinc-iodine battery enabled by N-doped carbon materials: Revealing the contributions of nitrogen configurations. ACS Sustainable Chem. Eng. 2020, 8, 13769–13776.

35

Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

36

Zhang, S. L.; Tan, X. J.; Meng, Z.; Tian, H. J.; Xu, F. F.; Han, W. Q. Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J. Mater. Chem. A 2018, 6, 9984–9996.

37

Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

38

Li, X. L.; Li, M.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Yang, Q.; Huang, Q.; Zhi, C. Y. Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 2021, 14, 407–413.

39

Zeng, X. M.; Meng, X. J.; Jiang, W.; Liu, J.; Ling, M.; Yan, L. J.; Liang, C. D. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries. ACS Sustainable Chem. Eng. 2020, 8, 14280–14285.

40

Hong, J. J.; Zhu, L. D.; Chen, C.; Tang, L. T.; Jiang, H.; Jin, B.; Gallagher, T. C.; Guo, Q. B.; Fang, C.; Ji, X. L. A dual plating battery with the iodine/[ZnIx(OH2)4-x](2-x) cathode. Angew. Chem., Int. Ed. 2019, 58, 15910–15915.

41

Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

File
12274_2021_3884_MOESM1_ESM.pdf (771.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2021
Revised: 02 September 2021
Accepted: 12 September 2021
Published: 23 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the Tianjin Natural Science Foundation of China (No. 20JCZDJC00280), and the National Natural Science Foundation of China (No. U1804255).

Return