Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Translation of exosome-based therapies to pharmaceutical use is hindered by difficulties in large-scale and cost-effective production of clinical-grade exosomes. The rational design of nanovesicles that mimic the functionalities and physicochemical properties of exosomes may circumvent these issues. In this study, membranes and secretome from efficacy-potentiated mesenchymal stem cells (MSCs) were developed into size-controllable nanovesicles (Meseomes). MSCs were primed with interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα), harvested, and exosome-mimicking Meseomes were subsequently synthesized via one-step extrusion. Meseomes demonstrated significant enhancement of pro-angiogenic, pro-proliferative, anti-inflammatory, and anti-fibrotic effects on endothelial cells, macrophages, and hepatic stellate cells in vitro. Meseomes from primed MSCs benefited from an enrichment of bioactive and therapeutic molecules compared to nanovesicles from unprimed MSCs, as validated by liquid chromatography–mass spectrometry (LC-MS) proteomic analysis. Systemic administration of Meseomes to acute liver injury models resulted in the recovery of liver function, attenuated tissue necrosis. Further assessment of locally administered Meseomes in acute hindlimb ischemia models resulted in the salvage of the majority of the ischemic hindlimb (> 80%), which was due to enhanced angiogenesis and M2 macrophage polarization. The versatility and therapeutic efficacy of our developed acellular Meseomes offer an appealing alternative to traditional cell or exosome therapies for regenerative and translational medicine.
Kalluri, R.; Lebleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.
Hoshino, A.; Kim, H. S.; Bojmar, L.; Gyan, K. E.; Cioffi, M.; Hernandez, J.; Zambirinis, C. P.; Rodrigues, G.; Molina, H.; Heissel, S. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020, 182, 1044–1061.e18.
Chen, Y. C.; Zhu, Q. F.; Cheng, L. M.; Wang, Y.; Li, M.; Yang, Q. S.; Hu, L.; Lou, D. D.; Li, J. Y.; Dong, X. J. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 2021, 18, 212–218.
Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 2021, 20, 6–7.
de Abreu, R. C.; Fernandes, H.; da Costa Martins, P. A.; Sahoo, S.; Emanueli, C.; Ferreira, L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 2020, 17, 685–697.
Tran, P. H. L.; Xiang, D. X.; Tran, T. T. D.; Yin, W.; Zhang, Y. M.; Kong, L. X.; Chen, K. S.; Sun, M. M.; Li, Y.; Hou, Y. C. et al. Exosomes and nanoengineering: A match made for precision therapeutics. Adv. Mater. 2020, 32, 1904040.
Lu, M.; Huang, Y. Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020, 242, 119925.
Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.
Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y. K.; Gho, Y. S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013, 7, 7698–7710.
Furman, N. E. T.; Lupu-Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett. 2013, 13, 3248–3255.
Kenari, A. N.; Kastaniegaard, K.; Greening, D. W.; Shambrook, M.; Stensballe, A.; Cheng, L.; Hill, A. F. Proteomic and post-translational modification profiling of exosome-mimetic nanovesicles compared to exosomes. Proteomics 2019, 19, 1800161.
Goh, W. J.; Zou, S.; Ong, W. Y.; Torta, F.; Alexandra, A. F.; Schiffelers, R. M.; Storm, G.; Wang, J. W.; Czarny, B.; Pastorin, G. Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: A cost-effective alternative. Sci. Rep. 2017, 7, 14322.
Yang, B. W., Chen, Y.; Shi, J. L. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv. Mater. 2019, 31, 1802896.
Xiong, F.; Ling, X.; Chen, X.; Chen, J.; Tan, J. X.; Cao, W. J.; Ge, L.; Ma, M. L.; Wu, J. Pursuing specific chemotherapy of orthotopic breast cancer with lung metastasis from docking nanoparticles driven by bioinspired exosomes. Nano Lett. 2019, 19, 3256–3266.
Millán, C. G.; Gandarillas, C. I. C.; Marinero, M. L. S.; Lanao, J. M. Cell-based drug-delivery platforms. Ther. Deliv. 2012, 3, 25–41.
Lanao, J. M.; Gutiérrez-Millán, C.; Colino, C. I. Cell-based drug delivery platforms. Pharmaceutics 2021, 13, 2.
Millán, C. G.; Marinero, M. L. S.; Castañeda, A. Z.; Lanao, J. M. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Release 2004, 95, 27–49.
Zhu, L. Y.; Gangadaran, P.; Kalimuthu, S.; Oh, J. M.; Baek, S. H.; Jeong, S. Y.; Lee, S. W.; Lee, J.; Ahn, B. C. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. Artif. Cells, Nanomed. Biotechnol. 2018, 46, S166–S179.
Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 2016, 15, 1037–1046.
Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156.
Ingato, D.; Lee, J. U.; Sim, S. J.; Kwon, Y. J. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. J. Control. Release 2016, 241, 174–185.
Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.
Alvarez-Lorenzo, C.; Concheiro, A. Bioinspired drug delivery systems. Curr. Opin. Biotechnol. 2013, 24, 1167–1173.
Shi, Y. F.; Wang, Y.; Li, Q.; Liu, K. L.; Hou, J. Q.; Shao, C. S.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol. 2018, 14, 493–507.
Shi, Y. F.; Su, J. J.; Roberts, A. I.; Shou, P. S.; Rabson, A. B.; Ren, G. W. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33, 136–143.
Ma, S.; Xie, N.; Li, W.; Yuan, B.; Shi, Y.; Wang, Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014, 21, 216–225.
Hsu, W. T.; Lin, C. H.; Chiang, B. L.; Jui, H. Y.; Wu, K. K. Y.; Lee, C. M. Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-γ+CD4+ regulatory T cells to control transplant arteriosclerosis. J. Immunol. 2013, 190, 2372–2380.
Hu, J.; Zhang, L.; Wang, N.; Ding, R.; Cui, S. Y.; Zhu, F.; Xie, Y. S.; Sun, X. F.; Wu, D.; Hong, Q. et al. Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int. 2013, 84, 521–531.
Karp, J. M.; Teo, G. S. L. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009, 4, 206–216.
Nitzsche, F.; Müller, C.; Lukomska, B.; Jolkkonen, J.; Deten, A.; Boltze, J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells 2017, 35, 1446–1460.
Yin, J. Q., Zhu, J.; Ankrum, J. A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 2019, 3, 90–104.
Sun, D. Z.; Abelson, B.; Babbar, P.; Damaser, M. S. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat. Rev. Urol. 2019, 16, 363–375.
Ranganath, S. H.; Levy, O.; Inamdar, M. S.; Karp, J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012, 10, 244–258.
Shi, Y.; Yang, Y. Q.; Guo, Q. Y.; Gao, Q. Z.; Ding, Y.; Wang, H.; Xu, W. R.; Yu, B.; Wang, M.; Zhao, Y. Y. et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote fibroblast-to-myofibroblast differentiation in inflammatory environments and benefit cardioprotective effects. Stem Cells Dev. 2019, 28, 799–811.
Mo, M. H.; Zhou, Y.; Li, S.; Wu, Y. J. Three-dimensional culture reduces cell size by increasing vesicle excretion. Stem Cells 2018, 36, 286–292.
Sun, Y.; Li, W. P.; Lu, Z. D.; Chen, R.; Ling, J.; Ran, Q. T.; Jilka, R. L.; Chen, X. D. Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB J. 2011, 25, 1474–1485.
Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.
Veith, A. P.; Henderson, K.; Spencer, A.; Sligar, A. D.; Baker, A. B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125.
Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 2016, 529, 307–315.
Liu, L. W.; You, Z. F.; Yu, H. S.; Zhou, L.; Zhao, H.; Yan, X. J.; Li, D. L.; Wang, B. J.; Zhu, L.; Xu, Y. Z. et al. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat. Mater. 2017, 16, 1252–1261.
Qi, C. X.; Li, Y. Q.; Badger, P.; Yu, H. S.; You, Z. F.; Yan, X. J.; Liu, W.; Shi, Y.; Xia, T.; Dong, J. H, et al. Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase. Biomaterials 2017, 126, 1–9.
Li, Y. Q.; Liu, W.; Liu, F.; Zeng, Y.; Zuo, S. M.; Feng, S. Y.; Qi, C. X.; Wang, B. J.; Yan, X. J.; Khademhosseini, A. et al. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc. Natl. Acad. Sci. USA 2014, 111, 13511–13516.
Ci, T. Y.; Li, H. J.; Chen, G. J.; Wang, Z. J.; Wang, J. Q.; Abdou, P.; Tu, Y. M.; Dotti, G.; Gu, Z. Cryo-shocked cancer cells for targeted drug delivery and vaccination. Sci. Adv. 2020, 6, eabc3013.