Journal Home > Volume 15 , Issue 2

Coupling effect of chemical composition and physical structure is a key factor to construct superaerophobic electrodes. Almost all reports about superaerophobic electrodes were aimed at precisely controlling morphology of loaded materials (constructing specific structure) and ignored the due role of substrate. Nevertheless, in this work, by using high precision and controllable femtosecond laser, hierarchical micro-nano structures with superaerophobic properties were constructed on the surface of silicon substrate (fs-Si), and such special super-wettability could be successfully inherited to subsequent self-supporting electrodes through chemical synthesis. Femtosecond laser processing endowed electrodes with high electrochemical surface area, strong physical structure, and remarkable superaerophobic efficacy. As an unconventional processing method, the reconstructed morphology of substrate surface bears the responsibility of superaerophobicity, thus liberating the structural constraints on loaded materials. Since this key of coupling effect is transferred from the loaded materials to substrate, we provided a new general scheme for synthesizing superaerophobic electrodes. The successful introduction of femtosecond laser will open a new idea to synthesize self-supporting electrodes for gas-involving reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions

Show Author's information Shuai Zhang1,§Lishuang Xu1,§Jie Wu1Ying Yang1( )Chengxin Zhang1Haiyan Tao2( )Jingquan Lin3( )Licheng Huang1Wencheng Fang1Keying Shi4Xiangting Dong1( )
Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
School of Science, Changchun University of Science and Technology, Changchun 130022, China
International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China

Abstract

Coupling effect of chemical composition and physical structure is a key factor to construct superaerophobic electrodes. Almost all reports about superaerophobic electrodes were aimed at precisely controlling morphology of loaded materials (constructing specific structure) and ignored the due role of substrate. Nevertheless, in this work, by using high precision and controllable femtosecond laser, hierarchical micro-nano structures with superaerophobic properties were constructed on the surface of silicon substrate (fs-Si), and such special super-wettability could be successfully inherited to subsequent self-supporting electrodes through chemical synthesis. Femtosecond laser processing endowed electrodes with high electrochemical surface area, strong physical structure, and remarkable superaerophobic efficacy. As an unconventional processing method, the reconstructed morphology of substrate surface bears the responsibility of superaerophobicity, thus liberating the structural constraints on loaded materials. Since this key of coupling effect is transferred from the loaded materials to substrate, we provided a new general scheme for synthesizing superaerophobic electrodes. The successful introduction of femtosecond laser will open a new idea to synthesize self-supporting electrodes for gas-involving reactions.

Keywords: hydrogen evolution reaction, femtosecond laser, gas evolution reactions, superaerophobic electrodes, bubbles releasing

References(47)

1

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

2

Zhang, P. C.; Wang, S. S.; Wang, S. T.; Jiang, L. Superwetting surfaces under different media: Effects of surface topography on wettability. Small 2015, 11, 1939–1946.

3

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

4

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

5

Chen, Q. J.; Ranaweera, R.; Luo, L. Hydrogen bubble formation at hydrogen-insertion electrodes. J. Phys. Chem. C 2018, 122, 15421–15426.

6

Ducker, W. A. Contact angle and stability of interfacial nanobubbles. Langmuir 2009, 25, 8907–8910.

7

Hao, R.; Fan, Y. S.; Anderson, T. J.; Zhang, B. Imaging single nanobubbles of H2 and O2 during the overall water electrolysis with single-molecule fluorescence microscopy. Anal. Chem. 2020, 92, 3682–3688.

8

Li, S. P.; Du, Y.; He, T.; Shen, Y. B.; Bai, C.; Ning, F. D.; Hu, X.; Wang, W. H.; Xi, S. B.; Zhou, X. C. Nanobubbles: An effective way to study gas-generating catalysis on a single nanoparticle. J. Am. Chem. Soc. 2017, 139, 14277–14284.

9

Sirkin, Y. A. P.; Gadea, E. D.; Scherlis, D. A.; Molinero, V. Mechanisms of nucleation and stationary states of electrochemically generated nanobubbles. J. Am. Chem. Soc. 2019, 141, 10801–10811.

10
Zhang, M. H.; Zhao, T. Y.; Yu, C. M.; Liu, Q.; Wang, G. Y.; Yang, H.; Yang, M.; Jiang, L.; Liu, M. J. Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance. Nano Res. in press, DOI: 10.1007/s12274-021-3520-y.https://doi.org/10.1007/s12274-021-3520-y
DOI
11

Qin, J. S.; Xie, T. H.; Zhou, D. J.; Luo, L.; Zhang, Z. Y.; Shang, Z. C.; Li, J. W.; Mohapatra, L.; Yu, J. W.; Xu, H. J. et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Res. 2021, 14, 2154–2159.

12

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

13

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. "Superaerophobic" nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

14

Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2021, 14, 961–968.

15

Xu, C. X.; Wu, S. H.; Xiong, G. P.; Guo, X. Z.; Yang, H. C.; Yan, J. H.; Cen, K. F.; Bo, Z.; Ostrikov, K. Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater. Appl. Catal. B: Environ. 2021, 280, 119461.

16

Paul, M. T. Y.; Yee, B. B.; Bruce, D. R.; Gates, B. D. Hexagonal arrays of cylindrical nickel microstructures for improved oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 7036–7043.

17

Taylor, A. K.; Mou, T.; Sonea, A.; Chen, J. Y.; Yee, B. B.; Gates, B. D. Arrays of microscale linear ridges with self-cleaning functionality for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 2399–2413.

18

Song, Q.; Xue, Z. J.; Liu, C.; Qiao, X. Z.; Liu, L.; Huang, C. H.; Liu, K. Y.; Li, X.; Lu, Z. L.; Wang, T. General strategy to optimize gas evolution reaction via assembled striped-pattern superlattices. J. Am. Chem. Soc. 2020, 142, 1857–1863.

19

Song, J. L.; Liu, Z. A.; Wang, X. Y.; Liu, H.; Lu, Y.; Deng, X.; Carmalt, C. J.; Parkin, I. P. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J. Mater. Chem. A 2019, 7, 13567–13576.

20

Yong, J. L.; Chen, F.; Fang, Y.; Huo, J. L.; Yang, Q.; Zhang, J. Z.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871.

21

Jiao, Y. L.; Lv, X. D.; Zhang, Y. Y.; Li, C. Z.; Li, J. W.; Wu, H.; Xiao, Y.; Wu, S. Z.; Hu, Y. L.; Wu, D. et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale 2019, 11, 1370–1378.

22

Wang, Z. Y.; Yang, T. S.; Zhang, Y. P.; Ou, Q. D.; Lin, H.; Zhang, Q. H.; Chen, H. Y.; Hoh, H. Y.; Jia, B. H.; Bao, Q. L. Flat lenses based on 2D perovskite nanosheets. Adv. Mater. 2020, 32, 2001388.

23

Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

24

Cheng, P.; Tian, X. Y.; Tang, W. Y.; Cheng, J.; Bao, J.; Wang, H. P.; Zheng, S. S.; Wang, Y. J.; Wei, X. B.; Chen, T. N. et al. Direct control of store-operated calcium channels by ultrafast laser. Cell Rese. 2021, 31, 758–772.

25

Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353.

26

Hu, H.; Li, Q.; Li, L. Q.; Teng, X. L.; Feng, Z. X.; Zhang, Y. L.; Wu, M. B.; Qiu, J. S. Laser irradiation of electrode materials for energy storage and conversion. Matter 2020, 3, 95–126.

27

Rauscher, T.; Müller, C. I.; Gabler, A.; Gimpel, T.; Köhring, M.; Kieback, B.; Schade, W.; Röntzsch, L. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution. Electrochim. Acta 2017, 247, 1130–1139.

28

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

29

Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

30

Wang, K. F.; Chen, Q.; Hu, Y. Y.; Wei, W.; Wang, S. Z.; Shen, Q.; Qu, P. Crystalline Ru0.33Se nanoparticles-decorated TiO2 nanotube arrays for enhanced hydrogen evolution reaction. Small 2018, 14, 1802132.

31

Zhu, W. X.; Zhang, W. T.; Li, Y. G.; Yue, Z. H.; Ren, M. R.; Zhang, Y.; Saleh, N. M.; Wang, J. L. Energy-efficient 1.67 V single- and 0.90 V dual-electrolyte based overall water-electrolysis devices enabled by a ZIF-L derived acid-base bifunctional cobalt phosphide nanoarray. J. Mater. Chem. A 2018, 6, 24277–24284.

32

Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.

33

Wang, K.; Zhou, C. J.; Xi, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1-x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 2015, 18, 1–11.

34

Xing, J. N.; Lin, F.; Huang, L. T.; Si, Y. C.; Wang, Y. J.; Jiao, L. F. Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting. Chin. J. Catal. 2019, 40, 1352–1359.

35

Li, J.; Kang, J. H.; Cai, Q.; Hong, W. T.; Jian, C. Y.; Liu, W.; Banerjee, K. Boosting hydrogen evolution performance of MoS2 by band structure engineering. Adv. Mater. Interfaces 2017, 4, 1700303.

36

Wang, Z. N.; Ji, S.; Liu, F. S.; Wang, H.; Wang, X. Y.; Wang, Q. Z.; Pollet, B. G.; Wang, R. F. Highly efficient and stable catalyst based on Co(OH)2@Ni electroplated on Cu-metallized cotton textile for water splitting. ACS Appl. Mater. Interfaces 2019, 11, 29791–29798.

37

Jia, Q. Q.; Gao, Y.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Peng, W. C.; Wang, S. B. Cobalt nanoparticles embedded in N-doped carbon on carbon cloth as free-standing electrodes for electrochemically-assisted catalytic oxidation of phenol and overall water splitting. Carbon 2019, 155, 287–297.

38

Liu, X. Y.; Zang, J. B.; Zhou, S. Y.; Tian, P. F.; Gao, H. W.; Song, S. W.; Li, R. S.; Wang, Y. H. Electroless deposition of Ni-Cu-P on a self-supporting graphene with enhanced hydrogen evolution reaction activity. Int. J. Hydrogen Energy 2020, 45, 13985–13993.

39

Cao, J.; Li, H. C.; Zhu, R. T.; Ma, L.; Zhou, K. C.; Wei, Q. P.; Luo, F. H. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays. J. Alloys Compd. 2020, 844, 155382.

40

Jian, C. Y.; Cai, Q.; Hong, W. T.; Li, J.; Liu, W. Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 2018, 14, 1703798.

41

Dai, W. J.; Ren, K.; Zhu, Y. A.; Pan, Y.; Yu, J.; Lu, T. Flower-like CoNi2S4/Ni3S2 nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 2020, 844, 156252.

42

Li, Z.; Feng, Y.; Liang, Y. L.; Cheng, C. Q.; Dong, C. K.; Liu, H.; Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 32, 1908521.

43

Huang, X. K.; Xu, X. P.; Luan, X. X.; Cheng, D. J. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 2020, 68, 104332.

44

Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

45

Li, F. B.; Lubetkin, S. D.; Roberts, D. J.; Hillman, A. R. Electrogravimetric and chronoamperometric monitoring of individual events of growth and detachment of electrolytic chlorine gas bubbles. J. Chem. Soc., Chem. Commun. 1994, 159–160.

46

Tsionsky, V.; Kaverin, A.; Daikhin, L.; Katz, G.; Gileadi, E. An experimental verification of the possible influence of gas nano-bubbles on the response of an electrochemical quartz crystal microbalance. Phys. Chem. Chem. Phys. 2005, 7, 1830–1835.

47

Zeradjanin, A. R.; Ventosa, E.; Bondarenko, A. S.; Schuhmann, W. Evaluation of the catalytic performance of gas-evolving electrodes using local electrochemical noise measurements. ChemSusChem 2012, 5, 1905–1911.

File
12274_2021_3811_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 June 2021
Revised: 10 August 2021
Accepted: 11 August 2021
Published: 16 September 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We were very grateful to the National Natural Science Foundation of China (Nos. 21601018, 51976015, 51902029, 61605017, and 51573023), the Science and Technology Development Planning Project of Jilin Province (Nos. 20200201534JC, 20200201250JC, 20190103035JH, and 20200201234JC), Jilin Association for Science and Technology (No. QT202003), the Science and Technology Research Planning Project of the Education Department of Jilin Province (Nos. JJKH20210801KJ and JJKH20200745KJ), and Project of Education Department in Jilin Province (Nos. 20190586KJ and 20190552KJ).

Return