Journal Home > Volume 15 , Issue 3

Spatial resolution is an important criterion to evaluate the performance of a scintillation screen for X-ray imaging. Perovskite-based X-ray screen, usually made of powders or polycrystalline films, suffers from low spatial resolution (~ 200 μm) due to the large thickness of scintillation layer despite of their compelling sensitivity to X-ray dose. In this work, a concentrated colloid of CsPbBr3 nanosheets was synthesized via a co-precipitation method at ambient condition. By drop casting, smooth scintillation screens of varied thickness were formed through self-assembly, which exhibited both high internal and external photoluminescence quantum yield (PL QY) (84.5% and 75.1%, respectively). The screen-based X-ray detector showed a high sensitivity down to 27 nGy/s, two orders of magnitude lower than the regular dose for medical diagnostics. Importantly, the screen of optimal thickness of 15 μm showcased an unprecedented spatial resolution (26 μm) when used for X-ray radiography, representing one order of magnitude improvement in perovskite community.


menu
Abstract
Full text
Outline
About this article

X-ray imager of 26-μm resolution achieved by perovskite assembly

Show Author's information Zhaofen Wang1,§Ruijia Sun2,§Nianqiao Liu3,§Huailin Fan4Xun Hu4Depeng Shen2( )Yuhai Zhang2( )Hong Liu1,2( )
State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China
Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
School of Physics and Technology, University of Jinan, Jinan 250022, China
School of Material Science and Engineering, University of Jinan, Jinan 250022, China

§Zhaofen Wang, Ruijia Sun, and Nianqiao Liu contributed equally to this work.

Abstract

Spatial resolution is an important criterion to evaluate the performance of a scintillation screen for X-ray imaging. Perovskite-based X-ray screen, usually made of powders or polycrystalline films, suffers from low spatial resolution (~ 200 μm) due to the large thickness of scintillation layer despite of their compelling sensitivity to X-ray dose. In this work, a concentrated colloid of CsPbBr3 nanosheets was synthesized via a co-precipitation method at ambient condition. By drop casting, smooth scintillation screens of varied thickness were formed through self-assembly, which exhibited both high internal and external photoluminescence quantum yield (PL QY) (84.5% and 75.1%, respectively). The screen-based X-ray detector showed a high sensitivity down to 27 nGy/s, two orders of magnitude lower than the regular dose for medical diagnostics. Importantly, the screen of optimal thickness of 15 μm showcased an unprecedented spatial resolution (26 μm) when used for X-ray radiography, representing one order of magnitude improvement in perovskite community.

Keywords: self-assembly, all-inorganic perovskite, perovskite scintillator, high-resolution X-ray imaging, perovskite nanosheets

References(44)

1

Zhou, Y.; Chen, J.; Bakr, O. M.; Mohammed, O. F. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 2021, 6, 739–768.

2

Wu, H. D.; Ge, Y. S.; Niu, G. D.; Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 2021, 4, 144–163.

3

Zhang, Y. H.; Sun, R. J.; Ou, X. Y.; Fu, K. F.; Chen, Q. S.; Ding, Y. C.; Xu, L. J.; Liu, L. M.; Han, Y.; Malko, A. V. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 2019, 13, 2520–2525.

4

Jang, J. K.; Ji, S.; Grandhi, G. K.; Cho, H. B.; Im, W. B.; Park, J. U. Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites. Adv. Mater. 2021, 33, 2008539.

5

Su, Y. R.; Ma, W. B.; Yang, Y. Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. 2020, 41, 051204.

6

Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

7

Chen, L.; Tang, F.; Wang, Y. X.; Gao, S.; Cao, W. G.; Cai, J. H.; Chen, L. W. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Res. 2015, 8, 263–270.

8

Liu, J. Y.; Shabbir, B.; Wang, C. J.; Wan, T.; Ou, Q. D.; Yu, P.; Tadich, A.; Jiao, X. C.; Chu, D. W.; Qi, D. C. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644.

9

Kasap, S. Low-cost X-ray detectors. Nat. Photon. 2015, 9, 420–421.

10

Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 2017, 11, 315–321.

11

Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A: Accelerat. Spectromet. Detect. Assoc. Equip. 2016, 809, 130–139.

12

Ariesanti, E.; Hawrami, R.; Burger, A.; Motakef, S. Improved growth and scintillation properties of intrinsic, non-hygroscopic scintillator Cs2HfCl6. J. Lumin. 2020, 217, 116784.

13

Büchele, P.; Richter, M.; Tedde, S. F.; Matt, G. J.; Ankah, G. N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 2015, 9, 843–848.

14

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

15

Yin, W. J.; Chen, H. Y.; Shi, T. T.; Wei, S. H.; Yan, Y. F. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 2015, 1, 1500044.

16

Song, J. Z.; Cui, Q. Z.; Li, J. H.; Xu, J. Y.; Wang, Y.; Xu, L. M.; Xue, J.; Dong, Y. H.; Tian, T.; Sun, H. D. et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible–infrared dual-modal photodetectors. Adv. Opt. Mater. 2017, 5, 1700157.

17

Dirin, D. N.; Cherniukh, I.; Yakunin, S.; Shynkarenko, Y.; Kovalenko, M. V. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 2016, 28, 8470–8474.

18

Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

19

Xu, Q.; Wang, X.; Zhang, H.; Shao, W. Y.; Nie, J.; Guo, Y.; Wang, J.; Ouyang, X. P. CsPbBr3 single crystal X-ray detector with schottky barrier for X-ray imaging application. ACS Appl. Electron. Mater. 2020, 2, 879–884.

20

Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

21

Xin, B.; Pak, Y.; Mitra, S.; Almalawi, D.; Alwadai, N.; Zhang, Y. H.; Roqan, I. S. Self-patterned CsPbBr3 nanocrystals for high-performance optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 5223–5231.

22

Park, Y. G.; Kim, H.; Park, S. Y.; Kim, J. Y.; Park, J. U. Instantaneous and repeatable self-healing of fully metallic electrodes at ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 41497–41505.

23

Stampanoni, M.; Borchert, G.; Wyss, P.; Abela, R.; Patterson, B.; Hunt, S.; Vermeulen, D.; Rüegsegger, P. High resolution X-ray detector for synchrotron-based microtomography. Nucl. Instrum. Methods Phys. Res. A: Accelerat. Spectromet. Detect. Assoc. Equip. 2002, 491, 291–301.

24

Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

25

Kojima, K.; Ikemura, K.; Matsumori, K.; Yamada, Y.; Kanemitsu, Y.; Chichibu, S. F. Internal quantum efficiency of radiation in a bulk CH3NH3PbBr3 perovskite crystal quantified by using the omnidirectional photoluminescence spectroscopy. APL Mater. 2019, 7, 071116.

26

Zhang, D. Q.; Gu, L. L.; Zhang, Q. P.; Lin, Y. J.; Lien, D. H.; Kam, M.; Poddar, S.; Garnett, E. C.; Javey, A.; Fan, Z. Y. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett. 2019, 19, 2850–2857.

27

Lin, Q. Q.; Armin, A.; Lyons, D. M.; Burn, P. L.; Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 2015, 27, 2060–2064.

28

Wang, C. Y.; Liang, P.; Xie, R. J.; Yao, Y.; Liu, P.; Yang, Y. T.; Hu, J.; Shao, L. Y.; Sun, X. W.; Kang, F. Y. et al. Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 2020, 32, 7814–7821.

29

Akkerman, Q. A.; Motti, S. G.; Kandada, A. R. S.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

30

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

31

Takeoka, Y.; Asai, K.; Rikukawa, M.; Sanui, K. Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films. Bull. Chem. Soc. Jpn. 2006, 79, 1607–1613.

32

Jagielski, J.; Kumar, S.; Wang, M. C.; Scullion, D.; Lawrence, R.; Li, Y. T.; Yakunin, S.; Tian, T.; Kovalenko, M. V.; Chiu, Y. C. et al. Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Sci. Adv. 2017, 3, eaaq0208.

33

Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Jiang, H.; Li, C. Z. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253–4258.

34

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

35

Shearer, D. R.; Bopaiah, M. Dose rate limitations of integrating survey meters for diagnostic X-ray survevs. Health Phys. 2000, 79, S20–S21.

36

Clairand, I.; Bordy, J. M.; Carinou, E.; Daures, J.; Debroas, J.; Denozière, M.; Donadille, L.; Ginjaume, M.; Itié, C.; Koukorava, C. et al. Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations-ORAMED project. Radiat. Meas. 2011, 46, 1252–1257.

37

Zhu, W. J.; Ma, W. B.; Su, Y. R.; Chen, Z.; Chen, X. Y.; Ma, Y. G.; Bai, L. Z.; Xiao, W. G.; Liu, T. Y.; Zhu, H. M. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Sci. Appl. 2020, 9, 112.

38

Xie, A. Z.; Hettiarachchi, C.; Maddalena, F.; Witkowski, M. E.; Makowski, M.; Drozdowski, W.; Arramel, A.; Wee, A. T. S.; Springham, S. V.; Vuong, P. Q. et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 2020, 1, 37.

39

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Cui, J.; Wu, H. D.; Ren, X. D.; Zhao, K.; Feng, J. S.; Tang, J.; Xu, Z. et al. Large lead-free perovskite single crystal for high-performance coplanar X-ray imaging applications. Adv. Opt. Mater. 2020, 8, 2000814.

40

Song, X.; Cui, Q. Y.; Liu, Y. C.; Xu, Z.; Cohen, H.; Ma, C.; Fan, Y. Y.; Zhang, Y. X.; Ye, H. C.; Peng, Z. H. et al. Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging. Adv. Mater. 2020, 32, 2003353.

41

Cho, S.; Kim, S.; Kim, J.; Jo, Y.; Ryu, I.; Hong, S.; Lee, J. J.; Cha, S.; Nam, E. B.; Lee, S. U. et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light: Sci. Appl. 2020, 9, 156.

42

Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

43

Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

44

Cao, J. T.; Guo, Z.; Zhu, S.; Fu, Y. Y.; Zhang, H.; Wang, Q.; Gu, Z. J. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging. ACS Appl. Mater. Interfaces 2020, 12, 19797–19804.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 June 2021
Revised: 01 August 2021
Accepted: 10 August 2021
Published: 09 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21805111), Natural Science Foundation of Shandong Province (No. ZR2020YQ12), and Taishan Scholar Project of Shandong Province (No. tsqn201812082).

Return