AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses

Asif Ali1Haider Abbas2Muhammad Hussain1Syed Hassan Abbas Jaffery1Sajjad Hussain1Changhwan Choi2( )Jongwan Jung1( )
HMC (Hybrid Materials Center) and Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143–747, Republic of Korea
Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Investigating the promising chalcogenide materials for the development of memory and advanced neuromorphic computing applications is a critical step in realizing electronic memory and synaptic devices that can efficiently emulate biological synaptic functions. However, the assessment of monochalcogenide materials for the fabrication of highly scalable memory and electronic synaptic devices that can accurately mimic synaptic functions remain limited. In the present study, we investigated the thickness-dependent resistive switching (RS) behavior of conductive bridge random access memory (CBRAM) based on a monochalcogenide GeSe switching medium for its possible application in high-performance memory and electronic synapses. GeSe thin films of different thicknesses (6, 13, 24, 35, 47, and 56 nm) were deposited via sputtering to fabricate CBRAM devices with a stacking sequence of Ag/GeSe/Pt/Ti/SiO2. The devices exhibited compliance current (CC)-free and electroforming-free RS with highly stable endurance and retention characteristics with no major degradation. All devices with a thickness of 6 nm had a low-resistance state (LRS), which required an initial reset to ensure reliable switching cycles. The devices with a thickness of 47 nm and above exhibited the co-existence of unipolar resistive switching (U-RS) and bipolar resistive switching (B-RS) with the CC-controlled transition between the two switching behaviors. Multilevel resistance states in the 24-nm device between a high-resistance state (HRS) and an LRS were achieved by controlling the set-CC (from 5 mA to CC-free) and the reset stop voltage (from –0.5 to –1.0 V) during the set and reset processes, respectively. The analog RS behavior of the device was further investigated with appropriate pulse measurements to emulate vital synaptic functions, including long-term potentiation (LTP), long-term depression (LTD), spike-rate-dependent plasticity (SRDP), spike-timing-dependent plasticity (STDP), paired-pulse facilitation (PPF), paired-pulse depression (PPD) and post-tetanic potentiation (PTP). Overall, the detailed investigation of thickness-dependent GeSe monochalcogenide material indicates that it is a highly suitable candidate for use in highly scalable memory devices and electronic synapses for neuromorphic computing applications.

References

1

Abbas, H.; Ali, A.; Jung, J.; Hu, Q. L.; Park, M. R.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices. Appl. Phys. Lett. 2019, 114, 093503.

2

Kim, W.; Yoo, C.; Park, E. S.; Ha, M.; Jeon, J. W.; Kim, G. S.; Woo, K. S.; Lee, Y. K.; Hwang, C. S. Electroforming-free bipolar resistive switching in GeSe thin films with a Ti-containing electrode. ACS Appl. Mater. Interfaces 2019, 11, 38910–38920.

3

Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

4

Ali, A.; Abbas, Y.; Abbas, H.; Jeon, Y. R.; Hussain, S.; Naqvi, B. A.; Choi, C.; Jung, J. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Appl. Surf. Sci. 2020, 525, 146390.

5

Lai, Y. S.; Tu, C. H.; Kwong, D. L.; Chen, J. S. Charge-transport characteristics in bistable resistive poly(N-vinylcarbazole) films. IEEE Electron Device Lett. 2006, 27, 451–453.

6

Seo, S.; Lee, M. J.; Kim, D. C.; Ahn, S. E.; Park, B. H.; Kim, Y. S.; Yoo, I. K.; Byun, I. S.; Hwang, I. R.; Kim, S. H. et al. Electrode dependence of resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2005, 87, 263507.

7

Yang, W. Y.; Rhee, S. W. Effect of electrode material on the resistance switching of Cu2O film. Appl. Phys. Lett. 2007, 91, 232907.

8

Wu, M. C.; Ting, Y. H.; Chen, J. Y.; Wu, W. W. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci. 2019, 6, 1902363.

9

Abbas, Y.; Park, M. R.; Hu, Q. L.; Lee, T. S.; Abbas, H.; Yoon, T. S.; Kang, C. J. Resistive switching characteristics of tantalum oxide with different top electrodes. J. Nanosci. Nanotechnol. 2016, 16, 10231–10236.

10

Valov, I.; Sapezanskaia, I.; Nayak, A.; Tsuruoka, T.; Bredow, T.; Hasegawa, T.; Staikov, G.; Aono, M.; Waser, R. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 2012, 11, 530–535.

11

Hu, B. L.; Zhu, X. J.; Chen, X. X.; Pan, L.; Peng, S. S.; Wu, Y. Z.; Shang, J.; Liu, G.; Yan, Q.; Li, R. W. A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 2012, 134, 17408–17411.

12

Cho, B.; Yun, J. M.; Song, S.; Ji, Y.; Kim, D. Y.; Lee, T. Direct observation of Ag filamentary paths in organic resistive memory devices. Adv. Funct. Mater. 2011, 21, 3976–3981.

13

Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. Formation process of conducting filament in planar organic resistive memory. Appl. Phys. Lett. 2013, 102, 141606.

14

Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

15

Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.

16

Zhao, X. N.; Fan, Z. Y.; Xu, H. Y.; Wang, Z. Q.; Xu, J. Q.; Ma, J. G.; Liu, Y. C. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. J. Mater. Chem. C 2018, 6, 7195–7200.

17

Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.

18

Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2 and Mo1–xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

19

Yang, Z. B.; Hao, J. H.; Lau, S. P. Synthesis, properties, and applications of 2D amorphous inorganic mater. J. Appl. Phys. 2020, 127, 220901.

20
Titova, L. V.; Fregoso, B. M.; Grimm, R. L. Group-IV monochalcogenides GeS, GeSe, SnS, SnSe. In Chalcogenide: From 3D to 2D and Beyond. Liu, X. Y.; Lee, S.; Furdyna, J. K.; Luo, T.; Zhang, Y. H., Eds.; Elsevier: Amsterdam, 2020; pp 119–151.https://doi.org/10.1016/B978-0-08-102687-8.00007-5
21

Albers, W.; Haas, C.; Vink, H. J.; Wasscher, J. D. Investigations on SnS. J. Appl. Phys. 1961, 32, 2220–2225.

22

Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

23

Grandke, T.; Ley, L. Angular-resolved UV photoemission and the band structure of GeS. Phys. Rev. B 1977, 16, 832–842.

24

Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.

25

Cook, A. M.; Fregoso, B. M.; de Juan, F.; Coh, S.; Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 2017, 8, 14176.

26

Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

27

Rodin, A. S.; Gomes, L. C.; Carvalho, A.; Neto, A. H. C. Valley physics in tin (II) sulfide. Phys. Rev. B 2016, 93, 045431.

28

Jaffery, S. H. A.; Kim, J.; Dastgeer, G.; Hussain, M.; Ali, A.; Hussain, S.; Eom, J.; Hong, S.; Jung, J. Thickness-dependent, gate-tunable rectification and highly sensitive photovoltaic behavior of heterostructured GeSe/WS2 p–n diode. Adv. Mater. Interfaces 2020, 7, 2000893.

29

Hussain, M.; Aftab, S.; Jaffery, S. H. A.; Ali, A.; Hussain, S.; Cong, D. N.; Akhtar, R.; Seo, Y.; Eom, J.; Gautam, P. et al. Asymmetric electrode incorporated 2D GeSe for self-biased and efficient photodetection. Sci. Rep. 2020, 10, 9374.

30

Nandakumar, S. R.; Gallo, M. L.; Boybat, I.; Rajendran, B.; Sebastian, A.; Eleftheriou, E. A phase-change memory model for neuromorphic computing. J. Appl. Phys. 2018, 124, 152135.

31

Burr, G. W.; Breitwisch, M. J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L. A.; Padilla, A. et al. Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28, 223–262.

32

Nam, K. H.; Kim, J. H.; Cho, W. J.; Kim, C. H.; Chung, H. B. Resistive switching in amorphous GeSe-based resistive random access memory. J. Nanosci. Nanotechnol. 2016, 16, 10393–10396.

33

Soni, R.; Meuffels, P.; Staikov, G.; Weng, R.; Kügeler, C.; Petraru, A.; Hambe, M.; Waser, R.; Kohlstedt, H. On the stochastic nature of resistive switching in Cu doped Ge0.3Se0.7 based memory devices. J. Appl. Phys. 2011, 110, 054509.

34

Lee, S. J.; Ahn, J. K.; Yoon, S. M.; Park, Y. S.; Yu, B. G.; Yoon, S. G. Switching characteristics of copper-doped GexTe1−x solid electrolyte films incorporated by nitrogen for programmable metallization cell memory applications. Met. Mater. Int. 2008, 14, 487–491.

35

Ismail, M.; Abbas, H.; Choi, C.; Kim, S. Controllable analog resistive switching and synaptic characteristics in ZrO2/ZTO bilayer memristive device for neuromorphic systems. Appl. Surf. Sci. 2020, 529, 147107.

36

Bräuhaus, D.; Schindler, C.; Böttger, U.; Waser, R. Radiofrequency sputter deposition of germanium–selenide thin films for resistive switching. Thin Solid Films 2008, 516, 1223–1226.

37

Hu, Q. L.; Abbas, Y.; Abbas, H.; Park, M. R.; Yoon, T. S.; Kang, C. J. Resistive switching characteristics in manganese oxide and tantalum oxide devices. Microelectron. Eng. 2016, 160, 49–53.

38

Feng, Y. L.; Huang, P.; Zhou, Z.; Ding, X. X.; Liu, L. F.; Liu, X. Y.; Kang, J. F. Negative differential resistance effect in Ru-based RRAM device fabricated by atomic layer deposition. Nanoscale Res. Lett. 2019, 14, 86.

39

Hu, Q. L.; Abbas, H.; Kang, T. S.; Lee, T. S.; Lee, N. J.; Park, M. R.; Yoon, T. S.; Kim, J.; Kang, C. J. Forming-free resistive switching characteristics in manganese oxide and hafnium oxide devices. Jpn. J. Appl. Phys. 2019, 58, 044001.

40

Zhang, Z. H.; Wang, Z. W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y. M.; Liu, Q.; Wu, H. Q.; Zhou, P. Memory materials and devices: From concept to application. InfoMat 2020, 2, 261–290.

41

Wang, S. S.; Wang, X. C.; Warner, J. H. All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246–5254.

42

Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory mater. Nat. Mater. 2008, 7, 399–405.

43

Rahaman, S. Z.; Maikap, S.; Das, A.; Prakash, A.; Wu, Y. H.; Lai, C. S.; Tien, T. C.; Chen, W. S.; Lee, H. Y.; Chen, F. T. et al. Enhanced nanoscale resistive switching memory characteristics and switching mechanism using high-Ge-content Ge0.5Se0.5 solid electrolyte. Nanoscale Res. Lett. 2012, 7, 614.

44

Trinh, T. T.; Jang, K.; Dao, V. A.; Yi, J. Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors. J. Appl. Phys. 2014, 116, 214504.

45

Rahaman, S. Z.; Maikap, S.; Chiu, H. C.; Lin, C. H.; Wu, T. Y.; Chen, Y. S.; Tzeng, P. J.; Chen, F.; Kao, M. J.; Tsai, M. J. Bipolar resistive switching memory using Cu metallic filament in Ge0.4Se0.6 solid electrolyte. Electrochem. Solid-State Lett. 2010, 13, H159–H162.

46

Yu, S. M.; Wong, H. S. P. Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 2011, 58, 1352–1360.

47

Jameson, J. R.; Kamalanathan, D. Subquantum conductive-bridge memory. Appl. Phys. Lett. 2016, 108, 053505.

48
Van den Hurk, J.; Waser, R.; Vescan, A. Germanium Sulphide Based Resistive Switching Devices; Verlay Dr. Hut, 2016.
49

Yang, C. C.; Chen, P. H.; Shih, C. C.; Wang, M. H.; Tsai, T. M.; Zheng, H. X.; Chen, W. C.; Chen, M. C.; Huang, H. C.; Ma, X. H. et al. Enhancement of surface chemical and physical properties of germanium-sulfur thin film using a water-supplemented carbon dioxide supercritical fluid treatment technique. Adv. Mater. Interfaces 2018, 5, 1801105.

50

van den Hurk, J.; Havel, V.; Linn, E.; Waser, R.; Valov, I. Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/nanoelectronic logic and memory architectures. Sci. Rep. 2013, 3, 2856.

51

Simmons, J. G.; Verderber, R. R. New conduction and reversible memory phenomena in thin insulating films. Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 1967, 301, 77–102.

52

Li, Y. T.; Long, S. B.; Zhang, M. H.; Liu, Q.; Shao, L. B.; Zhang, S.; Wang, Y.; Zuo, Q. Y.; Liu, S.; Liu, M. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications. IEEE Electron Device Lett. 2010, 31, 117–119.

53

Wang, C.; Wu, H. Q.; Gao, B.; Zhang, T.; Yang, Y. C.; Qian, H. Conduction mechanisms, dynamics and stability in ReRAMs. Microelectron. Eng. 2017, 187, 121–133.

54

Guo, T.; Sun, B.; Zhou, Y.; Zhao, H. B.; Lei, M.; Zhao, Y. Overwhelming coexistence of negative differential resistance effect and RRAM. Phys. Chem. Chem. Phys. 2018, 20, 20635–20640.

55

Wu, X.; Zhou, P.; Li, J.; Chen, L. Y.; Lv, H. B.; Lin, Y. Y.; Tang, T. A. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl. Phys. Lett. 2007, 90, 183507.

56

Schindler, C.; Thermadam, S. C. P.; Waser, R.; Kozicki, M. N. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 2007, 54, 2762–2768.

57

Ma, H. L.; Wang, Z. Q.; Xu, H. Y.; Zhang, L.; Zhao, X. N.; Han, M. S.; Ma, J. G.; Liu, Y. C. Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments. Chin. Phys. B 2016, 25, 127303.

58

Goux, L.; Lisoni, J. G.; Jurczak, M.; Wouters, D. J.; Courtade, L.; Muller, C. Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 2010, 107, 024512.

59

Jeong, D. S.; Schroeder, H.; Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid-State Lett. 2007, 10, G51.

60

Lv, H. B.; Xu, X. X.; Liu, H. T.; Liu, R. Y.; Liu, Q.; Banerjee, W.; Sun, H. T.; Long, S. B.; Li, L.; Liu, M. Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory. Sci. Rep. 2015, 5, 7764.

61

Ismail, M.; Abbas, H.; Choi, C.; Kim, S. Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd. 2020, 835, 155256.

62

Schmitt, R.; Kubicek, M.; Sediva, E.; Trassin, M.; Weber, M. C.; Rossi, A.; Hutter, H.; Kreisel, J.; Fiebig, M.; Rupp, J. L. M. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater. 2019, 29, 1804782.

63

Wang, L. Y.; Wang, Z. Y.; Zhao, W.; Hu, B.; Xie, L. H.; Yi, M. D.; Ling, H. F.; Zhang, C. X.; Chen, Y.; Lin, J. Y. et al. Neuromorphic computing: Controllable multiple depression in a graphene oxide artificial synapse (Adv. Electron. Mater. 1/2017). Adv. Electron. Mater. 2017, 3.

64

Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C. Improved performance of Ta2O5−x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage. Appl. Phys. Lett. 2017, 111, 223505.

65

Sarkar, P. K.; Bhattacharjee, S.; Barman, A.; Kanjilal, A.; Roy, A. Multilevel programming in Cu/NiOy/NiOx/Pt unipolar resistive switching devices. Nanotechnology 2016, 27, 435701.

66

Balatti, S.; Larentis, S.; Gilmer, D. C.; Ielmini, D. Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 2013, 25, 1474–1478.

67

Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L. et al. Electron holography on HfO2/HfO2−x bilayer structures with multilevel resistive switching properties. Nanotechnology 2017, 28, 215702.

68

Han, S. T.; Hu, L.; Wang, X. D.; Zhou, Y.; Zeng, Y. J.; Ruan, S. C.; Pan, C. F.; Peng, Z. C. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 2017, 4, 1600435.

69

Lee, T. S.; Lee, N. J.; Abbas, H.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl. Electron. Mater. 2020, 2, 1154–1161.

70

Zhang, Y.; Shen, J. X.; Wang, S. L.; Shen, W.; Cui, C.; Li, P. G.; Chen, B. Y.; Tang, W. H. Multilevel resistance switching of Ag/Nb-doped SrTiO3/Ti structure. Appl. Phys. A 2012, 109, 219–222.

71

Chen, Y. C.; Chung, Y. L.; Chen, B. T.; Chen, W. C.; Chen, J. S. Revelation on the interrelated mechanism of polarity-dependent and multilevel resistive switching in TaOx-based memory devices. J. Phys. Chem. C 2013, 117, 5758–5764.

72

Hu, W.; Zou, L. L.; Gao, C.; Guo, Y. C.; Bao, D. H. High speed and multi-level resistive switching capability of Ta2O5 thin films for nonvolatile memory application. J. Alloys Compd. 2016, 676, 356–360.

73

Hsieh, W. K.; Lam, K. T.; Chang, S. J. Bipolar Ni/ZnO/HfO2/Ni RRAM with multilevel characteristic by different reset bias. Mater. Sci. Semicond. Process. 2015, 35, 30–33.

74

Wu, J. J.; Ye, C.; Zhang, J. Q.; Deng, T. F.; He, P.; Wang, H. Multilevel characteristics for bipolar resistive random access memory based on hafnium doped SiO2 switching layer. Mater. Sci. Semicond. Process. 2016, 43, 144–148.

75

Ge, S. P.; Wang, Y. H.; Xiang, Z. C.; Cui, Y. M. Reset voltage-dependent multilevel resistive switching behavior in CsPb1–xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces 2018, 10, 24620–24626.

76

Ismail, M.; Ahmad, A.; Mahmood, K.; Akbar, T.; Rana, A. M.; Lee, J.; Kim, S. Room temperature deposited oxygen-deficient CeO2−x layer for multilevel resistive switching memory. Appl. Surf. Sci. 2019, 483, 803–810.

77

Wang, H.; Meng, F. B.; Cai, Y. R.; Zheng, L. Y; Li, Y. G.; Liu, Y. J.; Jiang, Y. Y.; Wang, X. T.; Chen, X. D. Sericin for resistance switching device with multilevel nonvolatile memory. Adv. Mater. 2013, 25, 5498–5503.

78

Zhou, W. P.; Xiong, Y. Q.; Zhang, Z. M.; Wang, D. H.; Tan, W. S.; Cao, Q. Q.; Qian, Z. H.; Du, Y. W. Multilevel resistance switching memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (011) heterostructure by combined straintronics-spintronics. ACS Appl. Mater. Interfaces 2016, 8, 5424–5431.

79

Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.

80

Islam, R.; Li, H. T.; Chen, P. Y.; Wan, W. E.; Chen, H. Y.; Gao, B.; Wu, H. Q.; Yu, S. M.; Saraswat, K.; Wong, H. S. P. Device and materials requirements for neuromorphic computing. J. Phys. D: Appl. Phys. 2019, 52, 113001.

81

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

82

Sokolov, A. S.; Jeon, Y. R.; Kim, S.; Ku, B.; Choi, C. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Mater. 2019, 11, 5.

83

Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53.

84

Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

85

Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.

86

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

87

Zhao, M. R.; Gao, B.; Tang, J. S.; Qian, H.; Wu, H. Q. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 2020, 7, 011301.

88

Cheng, C. D.; Li, Y. Q.; Zhang, T.; Fang, Y. C.; Zhu, J. D.; Liu, K. Q.; Xu, L. Y.; Cai, Y. M.; Yan, X. Q.; Yang, Y. C. et al. Bipolar to unipolar mode transition and imitation of metaplasticity in oxide based memristors with enhanced ionic conductivity. J. Appl. Phys. 2018, 124, 152103.

89

Emelyanov, A. V.; Nikiruy, K. E.; Demin, V. A.; Rylkov, V. V.; Belov, A. I.; Korolev, D. S.; Gryaznov, E. G.; Pavlov, D. A.; Gorshkov, O. N.; Mikhaylov, A. N. et al. Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron. Eng. 2019, 215, 110988.

90

Sokolov, A. S.; Jeon, Y. R.; Ku, B.; Choi, C. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. J. Alloys Compd. 2020, 822, 153625.

91

Prezioso, M.; Bayat, F. M.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 2016, 6, 21331.

92

Kim, M. K.; Lee, J. S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 2018, 12, 1680–1687.

93

Li, X. Y.; Wu, H. Q.; Bin, G.; Wu, W.; Wu, D.; Deng, N.; Cai, J.; Qian, H. Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 2016, 27, 305201.

94

Li, Y.; Chu, J. X.; Duan, W. J.; Cai, G. S.; Fan, X. H.; Wang, X. Z.; Wang, G.; Pei, Y. L. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces 2018, 10, 24598–24606.

95

Abbas, Y.; Ambade, R. B.; Ambade, S. B.; Han, T. H.; Choi, C. Tailored nanoplateau and nanochannel structures using solution-processed rutile TiO2 thin films for complementary and bipolar switching characteristics. Nanoscale 2019, 11, 13815–13823.

96

Kim, S.; Abbas, Y.; Jeon, Y. R.; Sokolov, A. S.; Ku, B.; Choi, C. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 2018, 29, 415204.

97

Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016, 37, 994–997.

98

Kim, K. M.; Lee, S. R.; Kim, S.; Chang, M.; Hwang, C. S. Self-limited switching in Ta2O5/TaOx memristors exhibiting uniform multilevel changes in resistance. Adv. Funct. Mater. 2015, 25, 1527–1534.

99

Wang, M. H.; Hebert, K. R. Metal and oxygen ion transport during ionic conduction in amorphous anodic oxide films. J. Electrochem. Soc. 1999, 146, 3741–3749.

100

Jeon, Y. R.; Abbas, Y.; Sokolov, A. S.; Kim, S.; Ku, B.; Choi, C. Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 2019, 11, 23329–23336.

101

Abbas, H.; Abbas, Y.; Hassan, G.; Sokolov, A. S.; Jeon, Y. R.; Ku, B.; Kang, C. J.; Choi, C. The coexistence of threshold and memory switching characteristics of ALD HfO2 memristor synaptic arrays for energy-efficient neuromorphic computing. Nanoscale 2020, 12, 14120–14134.

102

Tang, Y. P.; Shimizu, E.; Dube, G. R.; Rampon, C.; Kerchner, G. A.; Zhuo, M.; Liu, G. S.; Tsien, J. Z. Genetic enhancement of learning and memory in mice. Nature 1999, 401, 63–69.

Nano Research
Pages 2263-2277
Cite this article:
Ali A, Abbas H, Hussain M, et al. Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Research, 2022, 15(3): 2263-2277. https://doi.org/10.1007/s12274-021-3793-1
Topics:

997

Views

34

Crossref

32

Web of Science

31

Scopus

0

CSCD

Altmetrics

Received: 29 May 2021
Revised: 20 July 2021
Accepted: 01 August 2021
Published: 27 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return