Journal Home > Volume 15 , Issue 3

Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (Ion). Monolayer (ML) SnSe2, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (Lg) and ultralow supply voltage (Vdd) by using the ab initio quantum transport simulation. An ultrahigh Ion of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-Lg ML SnSe2 MOSFET at Vdd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until Lg scales down to 2 and 3 nm, the MOSFETs (at Vdd = 0.65 V) surpass Ion, intrinsic delay time ( τ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-Lg ML SnSe2 MOSFET (at Vdd = 0.4 V) fulfills the IRDS HP device and the 7-nm-Lg MOSFET (at Vdd = 0.55 V) fulfills the IRDS LP device for the year 2034.


menu
Abstract
Full text
Outline
About this article

Device performance limit of monolayer SnSe2 MOSFET

Show Author's information Hong Li1( )Jiakun Liang1Qida Wang1Fengbin Liu1Gang Zhou2Tao Qing2Shaohua Zhang2Jing Lu3,4,5( )
College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China
Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226000, China

Abstract

Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (Ion). Monolayer (ML) SnSe2, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (Lg) and ultralow supply voltage (Vdd) by using the ab initio quantum transport simulation. An ultrahigh Ion of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-Lg ML SnSe2 MOSFET at Vdd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until Lg scales down to 2 and 3 nm, the MOSFETs (at Vdd = 0.65 V) surpass Ion, intrinsic delay time ( τ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-Lg ML SnSe2 MOSFET (at Vdd = 0.4 V) fulfills the IRDS HP device and the 7-nm-Lg MOSFET (at Vdd = 0.55 V) fulfills the IRDS LP device for the year 2034.

Keywords: anisotropic, monolayer (ML) SnSe2, metal-oxide-semiconductor field-effect transistor (MOSFET), device performance limit, ab initio transport simulation

References(51)

1

Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore's law. Nature 2019, 567, 169–170.

2

Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296.

3

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

4

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

5

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

6

Kong, L. G.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768–1783.

7

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

8

Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

9

Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K. G. A.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.

10

Xu, K.; Chen, D. X.; Yang, F. Y.; Wang, Z. X.; Yin, L.; Wang, F.; Cheng, R. Q.; Liu, K. H.; Xiong, J.; Liu, Q. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 2017, 17, 1065–1070.

11

Miao, J. S.; Zhang, S. M.; Cai, L.; Scherr, M.; Wang, C. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano 2015, 9, 9236–9243.

12

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

13

Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

14

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

15

Quhe, R.; Li, Q. H.; Zhang, Q. X.; Wang, Y. Y.; Zhang, H.; Li, J. Z.; Zhang, X. Y.; Chen, D. X.; Liu, K. H.; Ye, Y. et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys. Rev. Appl. 2018, 10, 024022.

16

Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2017, 29, 2191–2201.

17

Sun, X. T.; Song, Z. G.; Liu, S. Q.; Wang, Y. Y.; Li, Y. Y.; Wang, W. Z.; Lu, J. Sub-5 nm monolayer arsenene and antimonene transistors. ACS Appl. Mater. Interfaces 2018, 10, 22363–22371.

18

Wang, Y. Y.; Fei, R. X.; Quhe, R.; Li, J. Z.; Zhang, H.; Zhang, X. Y.; Shi, B. W.; Xiao, L.; Song, Z. G.; Yang, J. B. et al. Many-body effect and device performance limit of monolayer InSe. ACS Appl. Mater. Interfaces 2018, 10, 23344–23352.

19

Quhe, R.; Liu, J. C.; Wu, J. X.; Yang, J.; Wang, Y. Y.; Li, Q. H.; Li, T. R.; Guo, Y.; Yang, J. B.; Peng, H. L. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 2019, 11, 532–540.

20

Yan, J. H.; Pang, H.; Xu, L.; Yang, J.; Quhe, R.; Zhang, X. Y.; Pan, Y. Y.; Shi, B. W.; Liu, S. Q.; Xu, L. Q. et al. Excellent device performance of sub-5-nm monolayer tellurene transistors. Adv. Electron. Mater. 2019, 5, 1900226.

21

Zhou, W. H.; Zhang, S. L.; Guo, S. Y.; Wang, Y. Y.; Lu, J.; Ming, X.; Li, Z.; Qu, H. Z.; Zeng, H. B. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys. Rev. Appl. 2020, 13, 044066.

22

Lv, S. Y.; Liu, X. Y.; Li, X. H.; Luo, W. F.; Xu, W. X.; Shi, Z. J.; Ren, Y. J.; Zhang, C. X.; Zhang, K. Electrochemical peeling few-layer SnSe2 for high-performance ultrafast photonics. ACS Appl. Mater. Interfaces 2020, 12, 43049–43057.

23

Park, Y. W.; Jerng, S. K.; Jeon, J. H.; Roy, S. B.; Akbar, K.; Kim, J.; Sim, Y.; Seong, M. J.; Kim, J. H.; Lee, Z. et al. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation. 2D Mater. 2017, 4, 014006.

24

Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

25

Shafique, A.; Samad, A.; Shin, Y. H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: A first principles study. Phys. Chem. Chem. Phys. 2017, 19, 20677–20683.

26

Li, H.; Xu, P. P.; Liang, J. K.; Liu, F. B.; Luo, J.; Lu, J. Ohmic contact in graphene/SnSe2 van der Waals heterostructures and its device performance from ab initio simulation. J. Mater. Sci. 2020, 55, 4321–4331.

27

Guo, C. L.; Tian, Z.; Xiao, Y. J.; Mi, Q. X.; Xue, J. M. Field-effect transistors of high-mobility few-layer SnSe2. Appl. Phys. Lett. 2016, 109, 203104.

28

Pei, T. F.; Bao, L. H.; Wang, G. C.; Ma, R. S.; Yang, H. F.; Li, J. J.; Gu, C. Z.; Pantelides, S.; Du, S. X.; Gao, H. J. Few-layer SnSe2 transistors with high on/off ratios. Appl. Phys. Lett. 2016, 108, 053506.

29

Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.

30

Xu, H.; Xing, J.; Huang, Y.; Ge, C.; Lu, J. H.; Han, X.; Du, J. Y.; Hao, H. Y.; Dong, J. J.; Liu, H. SnSe2 field-effect transistor with high on/off ratio and polarity-switchable photoconductivity. Nanoscale Res. Lett. 2019, 14, 17.

31

Su, Y.; Ebrish, M. A.; Olson, E. J.; Koester, S. J. SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 2013, 103, 263104.

32
IRDS. International Roadmap for Devices and Systems (IRDSTM) [Online]. http://irds.ieee.org/editions (accessed June 3 2021).
33
QuantumATK-Atomistic Simulation Software [Online]. https://www.synopsys.com/silicon/quantumatk.html (accessed June 3 2021).
34

Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G. et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2020, 32, 015901.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 3865–3868.

36

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

37

Liang, Y. F.; Yang, L. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 2015, 114, 063001.

38

Gao, S. Y.; Yang, L. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys. Rev. B 2017, 96, 155410.

39

Kim, W. Y.; Kim, K. S. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. J. Comput. Chem. 2008, 29, 1073–1083.

40
Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.https://doi.org/10.1017/CBO9780511805776
DOI
41
Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2005.https://doi.org/10.1017/CBO9781139164313
DOI
42

Huang, Y. C.; Ling, C. Y.; Liu, H.; Wang, S. F.; Geng, B. Y. Versatile electronic and magnetic properties of SnSe2 nanostructures induced by the strain. J. Phys. Chem. C 2014, 118, 9251–9260.

43

Li, G. P.; Ding, G. Q.; Gao, G. Y. Thermoelectric properties of SnSe2 monolayer. J. Phys.: Condens. Matter 2017, 29, 015001.

44

Pan, Y. Y.; Dai, J. R.; Xu, L.; Yang, J.; Zhang, X. J.; Yan, J. H.; Li, J. Z.; Shi, B. W.; Liu, S. Q.; Hu, H. et al. Sub-5-nm monolayer silicane transistor: A first-principles quantum transport simulation. Phys. Rev. Appl. 2020, 14, 024016.

45

Guo, Y.; Pan, F.; Zhao, G. Y.; Ren, Y. J.; Yao, B. B.; Li, H.; Lu, J. Sub-5 nm monolayer germanium selenide (GeSe) MOSFETs: Towards a high performance and stable device. Nanoscale 2020, 12, 15443–15452.

46

Yang, J.; Quhe, R.; Li, Q. H.; Liu, S. Q.; Xu, L. Q.; Pan, Y. Y.; Zhang, H.; Zhang, X. Y.; Li, J. Z.; Yan, J. H. et al. Sub 10 nm bilayer Bi2O2Se transistors. Adv. Electron. Mater. 2019, 5, 1800720.

47

Zhang, H.; Shi, B. W.; Xu, L.; Yan, J. F.; Zhao, W.; Zhang, Z. Y.; Zhang, Z. Y.; Lu, J. Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater. 2021, 3, 1560–1571.

48

Ding, Y.; Liu, Y. S.; Yang, G. F.; Gu, Y.; Fan, Q. G.; Lu, N. Y.; Zhao, H. Q.; Yu, Y. Z.; Zhang, X. M.; Huo, X. X. et al. High-performance ballistic quantum transport of sub-10 nm monolayer GeS field-effect transistors. ACS Appl. Electron. Mater. 2021, 3, 1151–1161.

49

Wang, J.; Cai, Q.; Lei, J. M.; Yang, G. F.; Xue, J. J.; Chen, D. J.; Liu, B.; Lu, H.; Zhang, R.; Zheng, Y. D. Performance of monolayer blue phosphorene double-gate MOSFETs from the first principles. ACS Appl. Mater. Interfaces 2019, 11, 20956–20964.

50

Guo, S. Y.; Wang, Y. Y.; Hu, X. M.; Zhang, S. L.; Qu, H. Z.; Zhou, W. H.; Wu, Z. H.; Liu, X. H.; Zeng, H. B. Ultrascaled double-gate monolayer SnS2 MOSFETs for high-performance and low-power applications. Phys. Rev. Appl. 2020, 14, 044031.

51

Quhe, R.; Chen, J. X.; Lu, J. A sub-10 nm monolayer ReS2 transistor for low-power applications. J. Mater. Chem. C 2019, 7, 1604–1611.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 June 2021
Revised: 23 July 2021
Accepted: 01 August 2021
Published: 02 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgment

This work was supported by the Beijing Natural Science Foundation of China (No. 4212046), the National Natural Science Foundation of China (Nos. 11704008 and 91964101), the Support Plan of Yuyou Youth, and the fund of high-level characteristic research direction from North China University of Technology.

Return