Journal Home > Volume 14 , Issue 11

The high price of state-of-the-art Pt electrocatalysts has plagued the acidic water electrolysis technique for decades. As a cheaper alternative to Pt, ruthenium is considered an inferior hydrogen evolution reaction (HER) catalyst than Pt due to its high susceptibility to oxidation and loss of activity. Herein, we reveal that the HER activity on Ru based catalysts could surpass Pt via tuning Ru oxidation state. Specifically, RuP clusters encapsulated in few layers of N, P-doped carbon (RuP@NPC) display a minimum over potential of 15.6 mV to deliver 10 mA·cm−2. Moreover, we for the first time show that a Ru based catalyst could afford current density up to 4 A·cm−2 in a practical water electrolysis cell, with voltage even lower than the Pt/C-based cell, as well as high robustness during 200 h operation. Using a combination of experiment probing and calculation, we postulate that the suitably charged Ru (~ +2.4) catalytic center is the origin for its superior catalytic behavior. While the moderately charged Ru is empowered with optimized H adsorption behavior, the carbon encapsulation layers protect RuP clusters from over oxidation, thereby conferring the catalyst with high robustness.

File
12274_2021_3780_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 June 2021
Revised: 13 July 2021
Accepted: 26 July 2021
Published: 12 August 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge funding from the National Key R&D Program of China (No. 2018YFB1502400), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21090400), and the Jilin Province Science and Technology Development Program (Nos. 20190201300JC and 20180101030JC).

Return