Journal Home > Volume 15 , Issue 3

We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors’ electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications.


menu
Abstract
Full text
Outline
About this article

Selective and self-validating breath-level detection of hydrogen sulfide in humid air by gold nanoparticle-functionalized nanotube arrays

Show Author's information Luis Antonio Panes-Ruiz1,§Leif Riemenschneider1,§Mohamad Moner Al Chawa2,§Markus Löffler3Bernd Rellinghaus3Ronald Tetzlaff2Viktor Bezugly1,4,5( )Bergoi Ibarlucea1,5( )Gianaurelio Cuniberti1,5( )
Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01062, Germany
Institute of Circuits and Systems, Technische Universität Dresden, Dresden 01062, Germany
Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01062, Germany
Life Science Incubator Sachsen GmbH & Co. KG, Dresden 01307, Germany
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01062, Germany

§Luis Antonio Panes-Ruiz, Leif Riemenschneider, and Mohamad Moner Al Chawa contributed equally to this work.

Abstract

We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors’ electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications.

Keywords: gold nanoparticles, chemiresistive gas sensors, semiconducting carbon nanotubes, hydrogen sulfide detection, chemiresistor mathematical model

References(69)

1

Sheridan, C. COVID-19 spurs wave of innovative diagnostics. Nat. Biotechnol. 2020, 38, 769–772.

2

Hunter, G. W.; Dweik, R. A. Applied breath analysis: An overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications. J. Breath. Res. 2008, 2, 037020.

3

Maier, D.; Laubender, E.; Basavanna, A.; Schumann, S.; Güder, F.; Urban, G. A.; Dincer, C. Toward continuous monitoring of breath biochemistry: A paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 2019, 4, 2945–2951.

4

Zhou, X. Y.; Xue, Z. J.; Chen, X. Y.; Huang, C. H.; Bai, W. Q.; Lu, Z. L.; Wang, T. Nanomaterial-based gas sensors used for breath diagnosis. J. Mater. Chem. B 2020, 8, 3231–3248.

5

Shehada, N.; Cancilla, J. C.; Torrecilla, J. S.; Pariente, E. S.; Brönstrup, G.; Christiansen, S.; Johnson, D. W.; Leja, M.; Davies, M. P. A.; Liran, O. et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 2016, 10, 7047–7057.

6

Kim, K. H.; Jahan, S. A.; Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 2012, 33, 1–8.

7

Pauling, L.; Robinson, A. B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376.

8

Popov, T. A. Human exhaled breath analysis. Ann. Allergy, Asthma Immunol. 2011, 106, 451–456.

9

Righettoni, M.; Tricoli, A.; Gass, S.; Schmid, A.; Amann, A.; Pratsinis, S. E. Breath acetone monitoring by portable Si: WO3 gas sensors. Anal. Chim. Acta 2012, 738, 69–75.

10

Behera, B.; Joshi, R.; Vishnu, G. K. A.; Bhalerao, S.; Pandya, H. J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res. 2019, 13, 024001.

11

Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673.

12

Brannelly, N. T.; Hamilton-Shield, J. P.; Killard, A. J. The measurement of ammonia in human breath and its potential in clinical diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501.

13

Güntner, A. T.; Pineau, N. J.; Chie, D.; Krumeich, F.; Pratsinis, S. E. Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J. Mater. Chem. B 2016, 4, 5358–5366.

14

Hibbard, T.; Crowley, K.; Kelly, F.; Ward, F.; Holian, J.; Watson, A.; Killard, A. J. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors. Anal. Chem. 2013, 85, 12158–12165.

15

Das, S.; Pal, M. Review-non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. J. Electrochem. Soc. 2020, 167, 037562.

16

Crofford, O. B.; Mallard, R. E.; Winton, R. E.; Rogers, N. L.; Jackson, J. C.; Keller, U. Acetone in breath and blood. Trans. Am. Clin. Climatol. Assoc. 1977, 88, 128–139.

17

Chang, J. E.; Lee, D. S.; Ban, S. W.; Oh, J.; Jung, M. Y.; Kim, S. H.; Park, S. J.; Persaud, K.; Jheon, S. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sens. Actuators B: Chem. 2018, 255, 800–807.

18

Joensen, O.; Paff, T.; Haarman, E. G.; Skovgaard, I. M.; Jensen, P. Ø.; Bjarnsholt, T.; Nielsen, K. G. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS One 2014, 9, e115584.

19

Birg, A.; Hu, S.; Lin, H. C. Reevaluating our understanding of lactulose breath tests by incorporating hydrogen sulfide measurements. JGH Open 2019, 3, 228–233.

20

Banik, G. D.; De, A.; Som, S.; Jana, S.; Daschakraborty, S. B.; Chaudhuri, S.; Pradhan, M. Hydrogen sulphide in exhaled breath: A potential biomarker for small intestinal bacterial overgrowth in IBS. J. Breath Res. 2016, 10, 026010.

21

Beauchamp, R. O.; Bus, J. S.; Popp, J. A.; Boreiko, C. J.; Andjelkovich, D. A.; Leber, P. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit. Rev. Toxicol. 1984, 13, 25–97.

22

Zürcher, A.; Laine, M. L.; Filippi, A. Diagnosis, prevalence, and treatment of halitosis. Curr. Oral Heal. Rep. 2014, 1, 279–285.

23

Panes-Ruiz, L. A.; Shaygan, M.; Fu, Y. X.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G. Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature. ACS Sens. 2018, 3, 79–86.

24

Joshi, R. K.; Kumar, A. Room temperature gas detection using silicon nanowires. Mater. Today 2011, 4, 52.

25

Mikolajick, T.; Heinzig, A.; Trommer, J.; Pregl, S.; Grube, M.; Cuniberti, G.; Weber, W. M. Silicon nanowires—A versatile technology platform. Phys. Status Solidi (RRL) - Rapid Res. Lett. 2013, 7, 793–799.

26

Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

27

Goldoni, A.; Petaccia, L.; Lizzit, S.; Larciprete, R. Sensing gases with carbon nanotubes: A review of the actual situation. J. Phys.: Condens. Matter 2010, 22, 013001.

28

Liu, Z. T.; Yang, T. Y.; Dong, Y.; Wang, X. H. A room temperature VOCs gas sensor based on a layer by layer multi-walled carbon nanotubes/poly-ethylene glycol composite. Sensors 2018, 18, 3113.

29

Jeon, J. Y.; Kang, B. C.; Byun, Y. T.; Ha, T. J. High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level. Nanoscale 2019, 11, 1587–1594.

30

Rigoni, F.; Tognolini, S.; Borghetti, P.; Drera, G.; Pagliara, S.; Goldoni, A.; Sangaletti, L. Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst 2013, 138, 7392–7399.

31

Jung, H. Y.; Kim, Y. L.; Park, S.; Datar, A.; Lee, H. J.; Huang, J.; Somu, S.; Busnaina, A.; Jung, Y. J.; Kwon, Y. K. High-performance H2S detection by redox reactions in semiconducting carbon nanotube-based devices. Analyst 2013, 138, 7206–7211.

32

Mubeen, S.; Zhang, T.; Chartuprayoon, N.; Rheem, Y.; Mulchandani, A.; Myung, N. V.; Deshusses, M. A. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal. Chem. 2010, 82, 250–257.

33

Sarker, B. K.; Shekhar, S.; Khondaker, S. I. Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. ACS Nano 2011, 5, 6297–6305.

34

Duchamp, M.; Lee, K.; Dwir, B.; Seo, J. W.; Kapon, E.; Forró, L.; Magrez, A. Controlled positioning of carbon nanotubes by dielectrophoresis: Insights into the solvent and substrate role. ACS Nano 2010, 4, 279–284.

35

Xiao, Z. G.; Elike, J.; Reynolds, A.; Moten, R.; Zhao, X. The fabrication of carbon nanotube electronic circuits with dielectrophoresis. Microelectron. Eng. 2016, 164, 123–127.

36

Li, P. F.; Martin, C. M.; Yeung, K. K.; Xue, W. Dielectrophoresis aligned single-walled carbon nanotubes as pH Sensors. Biosensors 2011, 1, 23–35.

37

Shekhar, S.; Stokes, P.; Khondaker, S. I. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 2011, 5, 1739–1746.

38

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

39

Ibrahim, I.; Bachmatiuk, A.; Warner, J. H.; Büchner, B.; Cuniberti, G.; Rümmeli, M. H. CVD-grown horizontally aligned single-walled carbon nanotubes: Synthesis routes and growth mechanisms. Small 2012, 8, 1973–1992.

40

Fujii, S.; Tanaka, T.; Suga, H.; Naitoh, Y.; Minari, T.; Tsukagoshi, K.; Kataura, H. Site-selective deposition of single-wall carbon nanotubes by patterning self-assembled monolayer for application to thin-film transistors. Phys. Status Solidi (B) 2010, 247, 2750–2753.

41

Tsukruk, V. V.; Ko, H.; Peleshanko, S. Nanotube surface arrays: Weaving, bending, and assembling on patterned silicon. Phys. Rev. Lett. 2004, 92, 065502.

42

Fan, Y. W.; Goldsmith, B. R.; Collins, P. G. Identifying and counting point defects in carbon nanotubes. Nat. Mater. 2005, 4, 906–911.

43

Charlier, J. C.; Arnaud, L.; Avilov, I. V.; Delgado, M.; Demoisson, F.; Espinosa, E. H.; Ewels, C. P.; Felten, A.; Guillot, J.; Ionescu, R. Carbon nanotubes randomly decorated with gold clusters: From nano2hybrid atomic structures to gas sensing prototypes. Nanotechnology 2009, 20, 375501.

44

Zanolli, Z.; Leghrib, R.; Felten, A.; Pireaux, J. J.; Llobet, E.; Charlier, J. C. Gas sensing with Au-decorated carbon nanotubes. ACS Nano 2011, 5, 4592–4599.

45

Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett. 2010, 10, 958–963.

46

Battie, Y.; Gorintin, L.; Ducloux, O.; Thobois, P.; Bondavalli, P.; Feugnet, G.; Loiseau, A. Thickness dependent sensing mechanism in sorted semi-conducting single walled nanotube based sensors. Analyst 2012, 137, 2151–2157.

47

Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B: Chem. 2013, 179, 32–45.

48

Águila, J. E. C; Cocoletzi H. H.; Cocoletzi G. H. A theoretical analysis of the role of defects in the adsorption of hydrogen sulfide on graphene. AIP Adv. 2013, 3, 032118.

49

Ganji, M. D.; Kiyani, H. Molecular simulation of efficient removal of H2S pollutant by cyclodextrine functionalized CNTs. Sci. Rep. 2019, 9, 10605.

50

Penza, M.; Rossi, R.; Alvisi, M.; Cassano, G.; Serra, E. Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications. Sens. Actuators B: Chem. 2009, 140, 176–184.

51

Mubeen, S.; Lim, J. H.; Srirangarajan, A.; Mulchandani, A.; Deshusses, M. A.; Myung, N. V. Gas sensing mechanism of gold nanoparticles decorated single-walled carbon nanotubes. Electroanalysis 2011, 23, 2687–2692.

52

Geng, J. F.; Thomas, M. D. R.; Shephard, D. S.; Johnson, B. F. G. Suppressed electron hopping in a Au nanoparticle/H2S system: Development towards a H2S nanosensor. Chem. Commun. 2005, 14, 1895–1897.

53

Leavitt, A. J.; Beebe, T. P. Jr. Chemical reactivity studies of hydrogen sulfide on Au(111). Surf. Sci. 1994, 314, 23–33.

54

Jaffey, D. M.; Madix, R. J. The reactivity of sulfur-containing molecules on noble metal surfaces: III. Ethanethiol on Au(110) and Ag(110). Surf. Sci. 1994, 311, 159–171.

55

Boyd, A.; Dube, I.; Fedorov, G.; Paranjape, M.; Barbara, P. Gas sensing mechanism of carbon nanotubes: From single tubes to high-density networks. Carbon 2014, 69, 417–423.

56

Bilić, A.; Reimers, J. R.; Hush, N. S.; Hafner, J. Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 2002, 116, 8981–8987.

57

Taylor, D. R.; Pijnenburg, M. W.; Smith, A. D.; De, Jongste J. C. Exhaled nitric oxide measurements: Clinical application and interpretation. Thorax 2006, 61, 817–827.

58

Mäklin, J.; Mustonen, T.; Kordás, K.; Saukko, S.; Tóth, G.; Vähäkangas, J. Nitric oxide gas sensors with functionalized carbon nanotubes. Phys. Status Solidi (B) 2007, 244, 4298–4302.

59

Kauffman, D. R.; Star, A. Chemically induced potential barriers at the carbon nanotube-metal nanoparticle interface. Nano Lett. 2007, 7, 1863–1868.

60

Svensson, J.; Campbell, E. E. B. Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 2011, 110, 111101.

61

Fuhrer, M. S.; Nygård, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A. et al. Crossed nanotube junctions. Science 2000, 288, 494–497.

62

Yoo, K. S.; Han, S. D.; Moon, H. G.; Yoon, S. J.; Kang, C. Y. Highly sensitive H2S sensor based on the metal-catalyzed SnO2 nanocolumns fabricated by glancing angle deposition. Sensors 2015, 15, 15468–15477.

63

Dilonardo, E.; Penza, M.; Alvisi, M.; Di Franco, C.; Rossi, R.; Palmisano, F.; Torsi, L.; Cioffi, N. Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties. Sens. Actuators B: Chem. 2016, 223, 417–428.

64

Penza, M.; Rossi, R.; Alvisi, M.; Cassano, G.; Signore, M. A.; Serra, E.; Giorgi, R. Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B: Chem. 2008, 135, 289–297.

65

Ovsianytskyi, O.; Nam, Y. S.; Tsymbalenko, O.; Lan, P. T.; Moon, M. W.; Lee, K. B. Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sens. Actuators B: Chem. 2018, 257, 278–285.

66

Shirsat, M. D.; Bangar, M. A.; Deshusses, M. A.; Myung, N. V.; Mulchandani, A. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl. Phys. Lett. 2009, 94, 083502.

67
Picos, R.; Al Chawa, M. M.; Roca, M.; Garcia-Moreno, E. A charge-dependent mobility memristor model. In Proceedings of the 10th Spanish Conference on Electron Devices, Aranjuez, Spain, 2015.
68
Picos, R.; Garcia-Moreno, E.; Al Chawa, M. M.; Chua, L. O. Using memristor formalism in semiconductor device modeling. In Proceedings of the 231st ECS Meeting, New Orleans, USA, 2017.https://doi.org/10.1149/MA2017-01/45/2048
DOI
69

Assmus, T.; Balasubramanian, K.; Burghard, M.; Kern, K.; Scolari, M.; Fu, N.; Myalitsin, A.; Mews, A. Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl. Phys. Lett. 2007, 90, 173109.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 May 2021
Revised: 15 July 2021
Accepted: 26 July 2021
Published: 02 September 2021
Issue date: March 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work has been funded by the German Federal State of Saxony as part of the “SNIFFBOT: Sniffing Dangerous Gases with Immersive Robots” project under grant agreement number 100369691 and by the German Federal Ministry of Education and Research (No. 031B0298). Part of this work was conducted in the Dresden Center for Nanoanalysis (DCN) at the Center for Advancing Electronics Dresden (cfaed), TU Dresden.

Rights and permissions

Copyright: 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return