Journal Home > Volume 15 , Issue 3

Although patients benefit from surgical transurethral resection of bladder cancers, some niduses are missed or incompletely resected, and small malignant lesions may recur. Intravesical chemotherapy and immunotherapy are universally accepted as adjuvant treatments after surgery to avoid recurrence and progression. However, these treatments still have limitations, including an insufficient retention period, inefficient permeability of chemotherapeutic agents, and dilution of the agents by urine. Nanostructure-based smart therapeutic platforms can be tailored to be responsive to internal or external stimuli to ameliorate this situation. This unparalleled capability empowers the precise aggregation of stimulus–responsive nanocarriers in the target regions, namely, the tumors, and subsequent release of the anticancer materials. This review summarizes the current nanostructure-based therapeutic platforms, especially stimulus–responsive nanocarriers, and highlights their benefits and limitations in bladder cancer therapy. Novel innovations in nanotechnology have undoubtedly arrived at a new height and have become useful for practical applications. Nanotechnology will positively promote the development of anticancer agents not only for bladder cancer but also for other solid tumors.


menu
Abstract
Full text
Outline
About this article

Smart nanocarriers as therapeutic platforms for bladder cancer

Show Author's information Tongyu Tong1,2,§Yupeng Guan1,2,§Yuanji Gao3,§Chengyuan Xing1,2Shiqiang Zhang1,2Donggen Jiang1Xiangwei Yang1Yang Kang1,2( )Jun Pang1( )
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

§Tongyu Tong, Yupeng Guan, and Yuanji Gao contributed equally to this work.

Abstract

Although patients benefit from surgical transurethral resection of bladder cancers, some niduses are missed or incompletely resected, and small malignant lesions may recur. Intravesical chemotherapy and immunotherapy are universally accepted as adjuvant treatments after surgery to avoid recurrence and progression. However, these treatments still have limitations, including an insufficient retention period, inefficient permeability of chemotherapeutic agents, and dilution of the agents by urine. Nanostructure-based smart therapeutic platforms can be tailored to be responsive to internal or external stimuli to ameliorate this situation. This unparalleled capability empowers the precise aggregation of stimulus–responsive nanocarriers in the target regions, namely, the tumors, and subsequent release of the anticancer materials. This review summarizes the current nanostructure-based therapeutic platforms, especially stimulus–responsive nanocarriers, and highlights their benefits and limitations in bladder cancer therapy. Novel innovations in nanotechnology have undoubtedly arrived at a new height and have become useful for practical applications. Nanotechnology will positively promote the development of anticancer agents not only for bladder cancer but also for other solid tumors.

Keywords: drug delivery, nanocarriers, bladder cancer, stimulus–responsive, therapeutic platform

References(162)

1

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CA: Cancer J. Clin. 2020, 70, 7–30.

2

Naito, S.; Algaba, F.; Babjuk, M.; Bryan, R. T.; Sun, Y. H.; Valiquette, L.; de la Rosette, J.; on behalf of the CROES Narrow Band Imaging Global Study Group. The clinical research office of the endourological society (CROES) multicentre randomised trial of narrow band imaging-assisted transurethral resection of bladder tumour (TURBT) versus conventional white light imaging-assisted turbt in primary non-muscle-invasive bladder cancer patients: Trial protocol and 1-year results. Eur. Urol. 2016, 70, 506–515.

3

Pandey, R.; Jackson, J. K.; Liggins, R.; Mugabe, C.; Burt, H. M. Enhanced taxane uptake into bladder tissues following co-administration with either mitomycin C, doxorubicin or gemcitabine: Association to exfoliation processes. BJU Int. 2018, 122, 898–908.

4

Lenis, A. T.; Lec, P. M.; Chamie, K.; Mshs, M. D. Bladder cancer: A review. JAMA 2020, 324, 1980–1991.

5

Eaton, A. F.; Clayton, D. R.; Ruiz, W. G.; Griffiths, S. E.; Rubio, M. E.; Apodaca, G. Expansion and contraction of the umbrella cell apical junctional ring in response to bladder filling and voiding. Mol. Biol. Cell 2019, 30, 2037–2052.

6

Tyagi, P.; Wu, P. C.; Chancellor, M.; Yoshimura, N.; Huang, L. Recent advances in intravesical drug/gene delivery. Mol. Pharm. 2006, 3, 369–379.

7

Soler, R.; Bruschini, H.; Martins, J. R.; Dreyfuss, J. L.; Camara, N. O.; Alves, M. T.; Leite, K. R.; Truzzi, J. C.; Nader, H. B.; Srougi, M. et al. Urinary glycosaminoglycans as biomarker for urothelial injury: Is it possible to discriminate damage from recovery? Urology 2008, 72, 937–942.

8

GuhaSarkar, S.; Banerjee, R. Intravesical drug delivery: Challenges, current status, opportunities and novel strategies. J. Control. Release 2010, 148, 147–159.

9

Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

10

Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

11

Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008, 60, 1226–1240.

12

Ma, Z. R.; Wan, H.; Wang, W. Z.; Zhang, X. D.; Uno, T.; Yang, Q. L.; Yue, J. Y.; Gao, H. P.; Zhong, Y. T.; Tian, Y. et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 2019, 12, 273–279.

13

Moulin, E.; Faour, L.; Carmona-Vargas, C.; Giuseppone, N. From molecular machines to stimuli-responsive materials. Adv. Mater. 2020, 32, 1906036.

14

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

15

Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.

16

Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128.

17

Wang, H. M.; Feng, Z. Q. Q.; Xu, B. Assemblies of peptides in a complex environment and their applications. Angew. Chem., Int. Ed. 2019, 58, 10423–10432.

18
Lv, S. X.; Sylvestre, M.; Prossnitz, A. N.; Yang, L. F.; Pun, S. H. Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chem. Rev., in press, https://doi.org/10.1021/acs.chemrev.0c00963.
DOI
19

Guo, H.; Hou, Y. C.; Ding, J. X. Nanomedicines for intravesical chemotherapy in bladder cancer. Curr. Pharm. Des. 2019, 25, 371–373.

20

Guo, H.; Li, F. P.; Qiu, H. P.; Xu, W. G.; Li, P. Q.; Hou, Y. C.; Ding, J. X.; Chen, X. S. Synergistically enhanced mucoadhesive and penetrable polypeptide nanogel for efficient drug delivery to orthotopic bladder cancer. Research 2020, 2020, 8970135.

21

Galluzzi, L.; Senovilla, L.; Zitvogel, L.; Kroemer, G. The secret ally: Immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 2012, 11, 215–233.

22

Feng, X. R.; Xu, W. G.; Liu, J. H.; Li, D.; Li, G.; Ding, J. X.; Chen, X. S. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci. Bull. 2021, 66, 362–373.

23

Wang, H. M.; Feng, Z. Q. Q.; Qin, Y. N.; Wang, J. Q.; Xu, B. Nucleopeptide assemblies selectively sequester ATP in cancer cells to increase the efficacy of doxorubicin. Angew. Chem., Int. Ed. 2018, 57, 4931–4935.

24

Liu, H. X.; Mei, C. M.; Deng, X. R.; Lin, W. Q.; He, L. Z.; Chen, T. F. Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics. Biomaterials 2021, 264, 120434.

25

Wang, H. M.; Feng, Z. Q. Q.; Xu, B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics 2019, 9, 3213–3222.

26

Wang, H. M.; Feng, Z. Q. Q.; Lu, A.; Jiang, Y. J.; Wu, H.; Xu, B. Instant hydrogelation inspired by inflammasomes. Angew. Chem., Int. Ed. 2017, 56, 7579–7583.

27

Li, G. Z.; Lei, Q. F.; Wang, F.; Deng, D. S.; Wang, S. P.; Tian, L. L.; Shen, W. W.; Cheng, Y. Y.; Liu, Z.; Wu, S. Fluorinated polymer mediated transmucosal peptide delivery for intravesical instillation therapy of bladder cancer. Small 2019, 15, 1900936.

28

Brisuda, A.; Ho, J. C. S.; Kandiyal, P. S.; Ng, J. T. Y.; Ambite, I.; Butler, D. S. C.; Háček, J.; Wan, M. L. Y.; Tran, T. H.; Nadeem, A. et al. Bladder cancer therapy using a conformationally fluid tumoricidal peptide complex. Nat. Commun. 2021, 12, 3427.

29

Qiu, H. P.; Guo, H.; Li, D.; Hou, Y. C.; Kuang, T. R.; Ding, J. X. Intravesical hydrogels as drug reservoirs. Trends Biotechnol. 2020, 38, 579–583.

30

Chatta, D.; Cottrell, L.; Burnett, B.; Laverty, G.; McConville, C. The use of water-soluble mucoadhesive gels for the intravesical delivery of epirubicin to the bladder for the treatment of non-muscle-invasive bladder cancer. J. Pharm. Pharmacol. 2015, 67, 1355–1362.

31

Huang, Z. M.; Xiao, H.; Lu, X. Y.; Yan, W. G.; Ji, Z. G. Enhanced photo/chemo combination efficiency against bladder tumor by encapsulation of DOX and ZnPC into in situ-formed thermosensitive polymer hydrogel. Int. J. Nanomedicine 2018, 13, 7623–7631.

32

van Valenberg, F. J. P.; Strauss-Ayali, D.; Agmon-Gerstein, Y.; Friedman, A.; Arentsen, H. C.; Schaafsma, H. E.; Witjes, J. A.; Oosterwijk, E. Assessment of the efficacy of repeated instillations of mitomycin C mixed with a thermosensitive hydrogel in an orthotopic rat bladder cancer model. Ther. Adv. Urol. 2018, 10, 213–221.

33

Jaiswal, M. K.; Pradhan, L.; Vasavada, S.; De, M.; Sarma, H. D.; Prakash, A.; Bahadur, D.; Dravid, V. P. Magneto-thermally responsive hydrogels for bladder cancer treatment: Therapeutic efficacy and in vivo biodistribution. Colloids Surf. B 2015, 136, 625–633.

34

Liu, C. W.; Wu, Y. T.; Lin, K. J.; Yu, T. J.; Kuo, Y. L.; Chang, L. C. A hydrogel-based epirubicin delivery system for intravesical chemotherapy. Molecules 2016, 21, 712.

35

GuhaSarkar, S.; More, P.; Banerjee, R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J. Control. Release 2017, 245, 147–156.

36

Sun, X. L.; Sun, P.; Li, B.; Liu, Y. Q.; Wang, M. W.; Suo, N.; Yang, M.; Zhang, D.; Jin, X. B. A new drug delivery system for Mitomycin C to improve intravesical instillation. Mater. Des. 2016, 110, 849–857.

37

Pavan Grandhi, T. S.; Potta, T.; Nitiyanandan, R.; Deshpande, I.; Rege, K. Chemomechanically engineered 3D organotypic platforms of bladder cancer dormancy and reactivation. Biomaterials 2017, 142, 171–185.

38

Sherif, A. Y.; Mahrous, G. M.; Alanazi, F. K. Novel in-situ gel for intravesical administration of ketorolac. Saudi Pharm. J. 2018, 26, 845–851.

39

Lin, T. S.; Wu, J. H.; Zhao, X. Z.; Lian, H. B.; Yuan, A. H.; Tang, X. L.; Zhao, S.; Guo, H. Q.; Hu, Y. Q. In situ floating hydrogel for intravesical delivery of adriamycin without blocking urinary tract. J. Pharm. Sci. 2014, 103, 927–936.

40

Lin, T. S.; Zhang, Y. F.; Wu, J. H.; Zhao, X. Z.; Lian, H. B.; Wang, W.; Guo, H. Q.; Hu, Y. Q. A floating hydrogel system capable of generating CO2 bubbles to diminish urinary obstruction after intravesical instillation. Pharm. Res. 2014, 31, 2655–2663.

41

Zhu, G. C.; Zhang, Y. F.; Wang, K. K.; Zhao, X. Z.; Lian, H. B.; Wang, W.; Wang, H. R.; Wu, J. H.; Hu, Y. Q.; Guo, H. Q. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release. Drug Deliv. 2016, 23, 2820–2826.

42

Goo, Y. T.; Yang, H. M.; Kim, C. H.; Kim, M. S.; Kim, H. K.; Chang, I. H.; Choi, Y. W. Optimization of a floating poloxamer 407-based hydrogel using the Box-Behnken design: In vitro characterization and in vivo buoyancy evaluation for intravesical instillation. Eur. J. Pharm. Sci. 2021, 163, 105885.

43

Yoon, H. Y.; Chang, I. H.; Goo, Y. T.; Kim, C. H.; Kang, T. H.; Kim, S. Y.; Lee, S. J.; Song, S. H.; Whang, Y. M.; Choi, Y. W. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. Int. J. Nanomedicine 2019, 14, 6249–6268.

44

Martin, D. T.; Steinbach, J. M.; Liu, J. C.; Shimizu, S.; Kaimakliotis, H. Z.; Wheeler, M. A.; Hittelman, A. B.; Saltzman, W. M.; Weiss, R. M. Surface-modified nanoparticles enhance transurothelial penetration and delivery of survivin siRNA in treating bladder cancer. Mol. Cancer Ther. 2014, 13, 71–81.

45

Mugabe, C.; Matsui, Y.; So, A. I.; Gleave, M. E.; Baker, J. H. E.; Minchinton, A. I.; Manisali, I.; Liggins, R.; Brooks, D. E.; Burt, H. M. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin. Cancer Res. 2011, 17, 2788–2798.

46

Mun, E. A.; Williams, A. C.; Khutoryanskiy, V. V. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size. Int. J. Pharm. 2016, 512, 32–38.

47

Kaldybekov, D. B.; Filippov, S. K.; Radulescu, A.; Khutoryanskiy, V. V. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. Eur. J. Pharm. Biopharm. 2019, 143, 24–34.

48

Miao, L.; Guo, S. T.; Zhang, J.; Kim, W. Y.; Huang, L. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv. Funct. Mater. 2014, 24, 6601–6611.

49

Kanasty, R. L.; Whitehead, K. A.; Vegas, A. J.; Anderson, D. G. Action and reaction: The biological response to siRNA and its delivery vehicles. Mol. Ther. 2012, 20, 513–524.

50

Davis, M. E.; Zuckerman, J. E.; Choi, C. H.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.

51

Li, H.; Wang, S. Y.; Ji, Z. X.; Xu, C. C.; Shlyakhtenko, L. S.; Guo, P. X. Construction of RNA nanotubes. Nano Res. 2019, 12, 1952–1958.

52

Chen, X. H.; Mangala, L. S.; Rodriguez-Aguayo, C.; Kong, X. C.; Lopez-Berestein, G.; Sood, A. K. RNA interference-based therapy and its delivery systems. Cancer Metast. Rev. 2018, 37, 107–124.

53

Kang, M. R.; Yang, G.; Place, R. F.; Charisse, K.; Epstein-Barash, H.; Manoharan, M.; Li, L. C. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 2012, 72, 5069–5079.

54

Woodrow, K. A.; Cu, Y.; Booth, C. J.; Saucier-Sawyer, J. K.; Wood, M. J.; Saltzman, W. M. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 2009, 8, 526–533.

55

Liu, J. Y.; Zhang, Y.; Zeng, Q. H.; Zeng, H. L.; Liu, X. M.; Wu, P.; Xie, H. Y.; He, L. Y.; Long, Z.; Lu, X. et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci. Adv. 2019, 5, eaaw6499.

56

Wei, S. G.; Gao, J. N.; Zhang, M. P.; Dou, Z. L.; Li, W. S.; Zhao, L. Z. Dual delivery nanoscale device for miR-451 and adriamycin co-delivery to combat multidrug resistant in bladder cancer. Biomed. Pharmacother. 2020, 122, 109473.

57

Erdogar, N.; İskit, A. B.; Eroglu, H.; Sargon, M. F.; Mungan, N. A.; Bilensoy, E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: Safety and efficacy. Int. J. Pharm. 2014, 471, 1–9.

58

Feron, O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol. 2009, 92, 329–333.

59

Liu, J.; Hebbrecht, T.; Brans, T.; Parthoens, E.; Lippens, S.; Li, C. N.; De Keersmaecker, H.; De Vos, W. H.; De Smedt, S. C.; Boukherroub, R. et al. Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation. Nano Res. 2020, 13, 485–495.

60

Choi, S. Y. C.; Collins, C. C.; Gout, P. W.; Wang, Y. Z. Cancer-generated lactic acid: A regulatory, immunosuppressive metabolite? J. Pathol. 2013, 230, 350–355.

61

Harjes, U.; Bensaad, K.; Harris, A. L. Endothelial cell metabolism and implications for cancer therapy. Br. J. Cancer 2012, 107, 1207–1212.

62

Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M. R. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 696–716.

63

Yang, Y.; Xu, L. G.; Zhu, W. J.; Feng, L. Z.; Liu, J. J.; Chen, Q.; Dong, Z. L.; Zhao, J. Y.; Liu, Z.; Chen, M. W. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials 2018, 156, 121–133.

64

Chen, H.; Shou, K. Q.; Chen, S.; Qu, C. R.; Wang, Z. M.; Jiang, L.; Zhu, M.; Ding, B. B.; Qian, K.; Ji, A. et al. Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging. Adv. Mater. 2021, 33, 2006902.

65

Ke, C. J.; Su, T. Y.; Chen, H. L.; Liu, H. L.; Chiang, W. L.; Chu, P. C.; Xia, Y. N.; Sung, H. W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem., Int. Ed. 2011, 50, 8086–8089.

66

Wang, B. L.; Zhang, K. B.; Wang, J. D.; Zhao, R. B.; Zhang, Q.; Kong, X. D. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf. B 2020, 189, 110832.

67

Fernandez, L.; Gonzalez, M.; Cerecetto, H.; Santo, M.; Silber, J. J. Solubilization and release properties of dendrimers. Evaluation as prospective drug delivery systems. Supramol. Chem. 2006, 18, 633–643.

68

Mei, L.; Zhu, G. Z.; Qiu, L. P.; Wu, C. C.; Chen, H. P.; Liang, H.; Cansiz, S.; Lv, Y. F.; Zhang, X. B.; Tan, W. H. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015, 8, 3447–3460.

69

Liu, P. C.; Wu, Q.; Li, Y. M.; Li, P. F.; Yuan, J.; Meng, X. W.; Xiao, Y. H. DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids Surf. B 2019, 181, 1012–1018.

70

Xing, Z. H.; Wei, J. H.; Cheang, T. Y.; Wang, Z. R.; Zhou, X.; Wang, S. S.; Chen, W.; Wang, S. M.; Luo, J. H.; Xu, A. W. Bifunctional pH-sensitive Zn(II)-curcumin nanoparticles/siRNA effectively inhibit growth of human bladder cancer cells in vitro and in vivo. J. Mater. Chem. B 2014, 2, 2714–2724.

71

Rahme, K.; Dagher, N. Chemistry routes for copolymer synthesis containing PEG for targeting, imaging, and drug delivery purposes. Pharmaceutics 2019, 11, 327.

72

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

73

Vila-Caballer, M.; Codolo, G.; Munari, F.; Malfanti, A.; Fassan, M.; Rugge, M.; Balasso, A.; de Bernard, M.; Salmaso, S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. J. Control. Release 2016, 238, 31–42.

74

Qiu, M.; Wang, D.; Liang, W. W.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501–506.

75

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

76

Ferreira, C. A.; Ni, D. L.; Rosenkrans, Z. T.; Cai, W. B. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, 11, 4955–4984.

77

Ovais, M.; Mukherjee, S.; Pramanik, A.; Das, D.; Mukherjee, A.; Raza, A.; Chen, C. Y. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv. Mater. 2020, 32, 2000055.

78

Chouchani, E. T.; Pell, V. R.; Gaude, E.; Aksentijević, D.; Sundier, S. Y.; Robb, E. L.; Logan, A.; Nadtochiy, S. M.; Ord, E. N. J.; Smith, A. C. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435.

79

Ye, M. Z.; Han, Y. X.; Tang, J. B.; Piao, Y.; Liu, X. R.; Zhou, Z. X.; Gao, J. Q.; Rao, J. H.; Shen, Y. Q. A Tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Adv. Mater. 2017, 29, 1702342.

80

Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

81

Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298.

82

Xiao, Y.; Meierhofer, D. Glutathione metabolism in renal cell carcinoma progression and implications for therapies. Int. J. Mol. Sci. 2019, 20, 3672.

83

Cheng, R.; Feng, F.; Meng, F. H.; Deng, C.; Feijen, J.; Zhong, Z. Y. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011, 152, 2–12.

84

Wong, D. Y. K.; Hsiao, Y. L.; Poon, C. K.; Kwan, P. C.; Chao, S. Y.; Chou, S. T.; Yang, C. S. Glutathione concentration in oral cancer tissues. Cancer Lett. 1994, 81, 111–116.

85

Zhu, Y. Q.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38.

86

Li, D. D.; Zhang, R. H.; Liu, G. T.; Kang, Y.; Wu, J. Redox-responsive self-assembled nanoparticles for cancer therapy. Adv. Healthc. Mater. 2020, 9, 2000605.

87

Zhang, L. H.; Zhang, S. Q.; Li, M. X.; Li, Y. M.; Xiong, H. Y.; Jiang, D. G.; Li, L. J.; Huang, H.; Kang, Y.; Pang, J. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy. Mater. Sci. Eng. C 2021, 123, 111956.

88

Guo, H.; Xu, W. G.; Chen, J. J.; Yan, L. S.; Ding, J. X.; Hou, Y. C.; Chen, X. S. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J. Control. Release 2017, 259, 136–148.

89

Xu, X.; Liu, K. P.; Jiao, B. B.; Luo, K. J.; Ren, J.; Zhang, G.; Yu, Q. S.; Gan, Z. H. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer. J. Control. Release 2020, 324, 493–504.

90

Pan, A.; Zhang, H. Y.; Li, Y. P.; Lin, T. Y.; Wang, F. L.; Lee, J.; Cheng, M. S.; Dall'Era, M.; Li, T. H.; deVere White, R. et al. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 2016, 27, 425103.

91

Guo, H.; Li, F. P.; Xu, W. G.; Chen, J. J.; Hou, Y. C.; Wang, C. X.; Ding, J. X.; Chen, X. S. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci. 2018, 5, 1800004.

92

Kashyap, D.; Mondal, R.; Tuli, H. S.; Kumar, G.; Sharma, A. K. Molecular targets of gambogic acid in cancer: Recent trends and advancements. Tumor Biol. 2016, 37, 12915–12925.

93

Hortelão, A. C.; Carrascosa, R.; Murillo-Cremaes, N.; Patiño, T.; Sánchez, S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 2019, 13, 429–439.

94

Tang, S. S.; Zhang, F. Y.; Gong, H.; Wei, F. N.; Zhuang, J.; Karshalev, E.; de Ávila, B. E. F.; Huang, C. Y.; Zhou, Z. D.; Li, Z. X. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020, 5, eaba6137.

95

Shi, J. J. Transforming platelets into microrobots. Sci. Robot. 2020, 5, eabc6582.

96

Choi, H.; Cho, S. H.; Hahn, S. K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 2020, 14, 6683–6692.

97

Alifu, N.; Zebibula, A.; Qi, J.; Zhang, H. Q.; Sun, C. W.; Yu, X. M.; Xue, D. W.; Lam, J. W. Y.; Li, G. H.; Qian, J. et al. Single-molecular near-infrared-II theranostic systems: Ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano 2018, 12, 11282–11293.

98

Lin, T. S.; Zhao, X. Z.; Zhao, S.; Yu, H.; Cao, W. M.; Chen, W.; Wei, H.; Guo, H. Q. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 2018, 8, 990–1004.

99

Li, G. Z.; Yuan, S. M.; Deng, D. S.; Ou, T.; Li, Y. Q.; Sun, R.; Lei, Q. F.; Wang, X. S.; Shen, W. W.; Cheng, Y. Y. et al. Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer-conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Adv. Funct. Mater. 2019, 29, 1901932.

100

Li, C.; Xiong, K. C.; Li, L.; Guo, Q. S.; Chen, X. L.; Madjar, A.; Watanabe, K.; Taniguchi, T.; Hwang, J. C. M.; Xia, F. N. Black phosphorus high-frequency transistors with local contact bias. ACS Nano 2020, 14, 2118–2125.

101

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

102

Sun, R.; Liu, X. C.; Li, G. Z.; Wang, H.; Luo, Y. X.; Huang, G. X.; Wang, X. S.; Zeng, G. H.; Liu, Z.; Wu, S. Photoactivated H2 nanogenerator for enhanced chemotherapy of bladder cancer. ACS Nano 2020, 14, 8135–8148.

103

Pei, P.; Sun, C. Y.; Tao, W.; Li, J.; Yang, X. Z.; Wang, J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019, 188, 74–82.

104

Zeng, F. C.; Qin, H.; Liu, L. M.; Chang, H. C.; Chen, Q.; Wu, L. H.; Zhang, L.; Wu, Z. J.; Xing, D. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. Nano Res. 2020, 13, 3403–3415.

105

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA: Cancer J. Clin. 2011, 61, 250–281.

106

Babič, A.; Herceg, V.; Ateb, I.; Allémann, E.; Lange, N. Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection. J. Control. Release 2016, 235, 155–164.

107

Li, K.; Dong, W. Y.; Qiu, L.; Liu, Q. Z.; Lv, G. G.; Peng, Y.; Xie, M. H.; Lin, J. G. A new GSH-responsive prodrug of 5-aminolevulinic acid for photodiagnosis and photodynamic therapy of tumors. Eur. J. Med. Chem. 2019, 181, 111582.

108

Song, X. J.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q. T.; Wang, C.; Chen, M. W.; Liu, Z. Self-supplied tumor oxygenation through separated liposomal delivery of HO and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018, 18, 6360–6368.

109

Zhang, F. R.; Wu, Q. Y.; Liu, H. Y. NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1643.

110

Gao, H.; Bi, Y.; Chen, J.; Peng, L. R.; Wen, K. K.; Ji, P.; Ren, W. F.; Li, X. Q.; Zhang, N.; Gao, J. et al. Near-infrared light-triggered switchable nanoparticles for targeted chemo/photothermal cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 15103–15112.

111

Gao, H.; Bi, Y.; Wang, X.; Wang, M.; Zhou, M. X.; Lu, H. R.; Gao, J. M.; Chen, J.; Hu, Y. Near-infrared guided thermal-responsive nanomedicine against orthotopic superficial bladder cancer. ACS Biomater. Sci. Eng. 2017, 3, 3628–3634.

112

Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S. C.; Moonen, C. T. W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 2014, 72, 49–64.

113

Wang, J. F.; Zhao, Z. L.; Shen, S. X.; Zhang, C. X.; Guo, S. C.; Lu, Y. K.; Chen, Y. M.; Liao, W. J.; Liao, Y. L.; Bin, J. Selective depletion of tumor neovasculature by microbubble destruction with appropriate ultrasound pressure. Int. J. Cancer 2015, 137, 2478–2491.

114

Shen, S. X.; Li, Y.; Xiao, Y. B.; Zhao, Z. L.; Zhang, C. X.; Wang, J. F.; Li, H. R.; Liu, F.; He, N.; Yuan, Y. et al. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 2018, 181, 293–306.

115

Ahmed, S. E.; Martins, A. M.; Husseini, G. A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug Target. 2014, 23, 16–42.

116

Wei, P.; Sun, M.; Yang, B.; Xiao, J. G.; Du, J. Z. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J. Control. Release 2020, 322, 81–94.

117

Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

118

Wang, J.; Koo, K. M.; Wang, Y. L.; Trau, M. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv. Sci. 2019, 6, 1900730.

119

Ho, Y. J.; Wu, C. H.; Jin, Q. F.; Lin, C. Y.; Chiang, P. H.; Wu, N.; Fan, C. H.; Yang, C. M.; Yeh, C. K. Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 2020, 232, 119723.

120

Wang, H. R.; Chao, Y.; Liu, J. J.; Zhu, W. W.; Wang, G. L.; Xu, L. G.; Liu, Z. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials 2018, 181, 310–317.

121

Theodoropoulos, V. E.; Lazaris, A.; Sofras, F.; Gerzelis, I.; Tsoukala, V.; Ghikonti, I.; Manikas, K.; Kastriotis, I. Hypoxia-inducible factor 1ɑ expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur. Urol. 2004, 46, 200–208.

122

Bhandari, P.; Novikova, G.; Goergen, C. J.; Irudayaraj, J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci. Rep. 2018, 8, 3112.

123

Choi, W.; Ochoa, A.; McConkey, D. J.; Aine, M.; Höglund, M.; Kim, W. Y.; Real, F. X.; Kiltie, A. E.; Milsom, I.; Dyrskjøt, L. et al. Genetic alterations in the molecular subtypes of bladder cancer: Illustration in the cancer genome atlas dataset. Eur. Urol. 2017, 72, 354–365.

124

Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P. V.; Fernandes, A. R. Gene therapy in cancer treatment: Why go nano? Pharmaceutics 2020, 12, 233.

125

Kamimura, K.; Yokoo, T.; Abe, H.; Terai, S. Gene therapy for liver cancers: Current status from basic to clinics. Cancers (Basel) 2019, 11, 1865.

126

Hu, C.; Jiang, D. P.; Wu, M.; Wang, J.; Zhang, R. G. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 1415–1426.

127

Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. I. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219–222.

128
Umemura, S.; Kawabata, K.; Yumita, N.; Nishigaki, R.; Umemura, K. Sonodynamic approach to tumor treatment. In IEEE 1992 Ultrasonics Symposium Proceedings, Tucson, AZ, USA, 1992, pp 1231–1240.
129

Yumita, N.; Iwase, Y.; Nishi, K.; Komatsu, H.; Takeda, K.; Onodera, K.; Fukai, T.; Ikeda, T.; Umemura, S.; Okudaira, K. et al. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics 2012, 2, 880–888.

130

Varchi, G.; Foglietta, F.; Canaparo, R.; Ballestri, M.; Arena, F.; Sotgiu, G.; Guerrini, A.; Nanni, C.; Cicoria, G.; Cravotto, G. et al. Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine 2015, 10, 3483–3494.

131

Krasovitski, B.; Frenkel, V.; Shoham, S.; Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. USA 2011, 108, 3258–3263.

132

Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.

133

Li, G. Z.; Wang, S. P.; Deng, D. S.; Xiao, Z. S.; Dong, Z. L.; Wang, Z. P.; Lei, Q. F.; Gao, S.; Huang, G. X.; Zhang, E. P. et al. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano 2020, 14, 1586–1599.

134

Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016, 116, 5338–5431.

135

Kang, T.; Li, F. Y.; Baik, S.; Shao, W.; Ling, D. S.; Hyeon, T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017, 136, 98–114.

136

Suo, N.; Wang, M. W.; Jin, Y.; Ding, J.; Gao, X. P.; Sun, X. L.; Zhang, H. Y.; Cui, M.; Zheng, J. L.; Li, N. L. et al. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer. Int. J. Nanomedicine 2019, 14, 1241–1254.

137

Yang, W. T.; Xiang, C. Y.; Xu, Y.; Chen, S. Z.; Zeng, W. W.; Liu, K.; Jin, X.; Zhou, X.; Zhang, B. B. Albumin-constrained large-scale synthesis of renal clearable ferrous sulfide quantum dots for T1-Weighted MR imaging and phototheranostics of tumors. Biomaterials 2020, 255, 120186.

138

Hua, M. Y.; Yang, H. W.; Liu, H. L.; Tsai, R. Y.; Pang, S. T.; Chuang, K. L.; Chang, Y. S.; Hwang, T. L.; Chang, Y. H.; Chuang, H. C. et al. Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy. Biomaterials 2011, 32, 8999–9010.

139
Han, H. C.; Yang, J. J.; Li, X. Y.; Qi, Y.; Yang, Z. Y.; Han, Z. J.; Jiang, Y. Y.; Stenzel, M.; Li, H.; Yin, Y. X. et al. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Res., in press, https://doi.org/10.1007/s12274-021-3293-3.
DOI
140

Zakaria, M. B.; Belik, A. A.; Liu, C. H.; Hsieh, H. Y.; Liao, Y. T.; Malgras, V.; Yamauchi, Y.; Wu, K. C. W. Prussian blue derived nanoporous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy. Chem. Asian J. 2015, 10, 1457–1462.

141

Karimi, M.; Sahandi Zangabad, P.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Ghahramanzadeh Asl, H.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A. et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl. Mater. Interfaces 2016, 8, 21107–21133.

142

Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.

143

Guo, J. X.; Feng, Z. J.; Liu, X.; Wang, C. R.; Huang, P. S.; Zhang, J. H.; Deng, L. D.; Wang, W. W.; Dong, A. J. An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. Soft Matter 2020, 16, 5750–5758.

144

Xu, Y. W.; Xu, Y.; Bi, B.; Hou, M. J.; Yao, L.; Du, Q. R.; He, A. J.; Liu, Y.; Miao, C. L.; Liang, X. Q. et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo. Acta Biomater. 2020, 108, 87–96.

145

Chen, J. P.; Leu, Y. L.; Fang, C. L.; Chen, C. H.; Fang, J. Y. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J. Pharm. Sci. 2011, 100, 655–666.

146

Men, K.; Liu, W.; Li, L.; Duan, X. M.; Wang, P.; Gou, M. L.; Wei, X. W.; Gao, X.; Wang, B. L.; Du, Y. et al. Delivering instilled hydrophobic drug to the bladder by a cationic nanoparticle and thermo-sensitive hydrogel composite system. Nanoscale 2012, 4, 6425–6433.

147

Shen, H. X.; Shi, S. J.; Zhang, Z. R.; Gong, T.; Sun, X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 2015, 5, 755–771.

148

He, Y. Y.; Nie, Y.; Cheng, G.; Xie, L.; Shen, Y. Q.; Gu, Z. W. Viral mimicking ternary polyplexes: A reduction-controlled hierarchical unpacking vector for gene delivery. Adv. Mater. 2014, 26, 1534–1540.

149

Zhong, Y.; Goltsche, K.; Cheng, L.; Xie, F.; Meng, F. H.; Deng, C.; Zhong, Z. Y.; Haag, R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials 2016, 84, 250–261.

150

Zhu, Y. T.; Zhao, Z.; Fu, X. Y.; Luo, Y.; Lei, C. Y.; Chen, W.; Li, F.; Pang, S. Y.; Chen, S. S.; Tan, W. L. The granulocyte macrophage-colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer. Stem Cell Res. 2014, 13, 111–122.

151
Rao, D. P.; Mei, K. N.; Yan, T. H.; Wang, Y.; Wu, W. J.; Chen, Y.; Wang, J. Y.; Zhang, Q. C.; Wu, S. Q. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Res., in press, https://doi.org/10.1007/s12274-021-3588-4.
DOI
152

Lin, T. S.; Yuan, A. H.; Zhao, X. Z.; Lian, H. B.; Zhuang, J. L.; Chen, W.; Zhang, Q.; Liu, G. X.; Zhang, S. W.; Chen, W. et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater. 2017, 53, 427–438.

153

Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41–48.

154

Xu, Y.; Zhai, X.; Su, P.; Liu, T. Q.; Zhou, L. Y.; Zhang, J. J.; Bao, B. Q.; Wang, L. H. Highly stable semiconducting polymer nanoparticles for multi-responsive chemo/photothermal combined cancer therapy. Theranostics 2020, 10, 5966–5978.

155

Lin, L. T.; Gong, H. Y.; Li, R.; Huang, J. J.; Cai, M. Y.; Lan, T.; Huang, W. S.; Guo, Y. J.; Zhou, Z. M.; An, Y. C. et al. Nanodrug with ROS and pH dual-sensitivity ameliorates liver fibrosis via multicellular regulation. Adv. Sci. 2020, 7, 1903138.

156

Zhao, N.; Ding, B. B.; Zhang, Y.; Klockow, J. L.; Lau, K.; Chin, F. T.; Cheng, Z.; Liu, H. G. Reactive oxygen species and enzyme dual-responsive biocompatible drug delivery system for targeted tumor therapy. J. Control. Release 2020, 324, 330–340.

157

Yu, Q. L.; Deng, T.; Lin, F. C.; Zhang, B.; Zink, J. I. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano 2020, 14, 5926–5937.

158

Zhang, D.; Sun, P.; Li, P.; Xue, A. B.; Zhang, X. K.; Zhang, H. Y.; Jin, X. B. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 2013, 34, 10258–10266.

159

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

160

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

161

Poinard, B.; Neo, S. Z. Y.; Yeo, E. L. L.; Heng, H. P. S.; Neoh, K. G.; Kah, J. C. Y. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 21125–21136.

162

Tan, J.; Sun, C. Y.; Xu, K.; Wang, C. C.; Guo, J. Immobilization of ALA-ZnII coordination polymer pro-photosensitizers on magnetite colloidal supraparticles for target photodynamic therapy of bladder cancer. Small 2015, 11, 6338–6346.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2021
Revised: 14 July 2021
Accepted: 16 July 2021
Published: 21 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 21704104 and 81772754), Shenzhen Science and Technology Innovation Commission (Nos. RCYX20200714114645131 and JCYJ20190809164617205), Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515011443 and 2021A1515010669), Major Basic Research and Cultivation Program of Natural Science Foundation of Guangdong Province (No. 2017A03038009), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 20ykpy17), Sanming Project of Medicine in Shenzhen (No. SZSM202011011), and Research Start-up Fund of Part-time PI, SAHSYSU (No. ZSQYJZPI202003).

Return