Journal Home > Volume 15 , Issue 2

In recent years, transparent and flexible materials have been widely pursued in electronics and optoelectronics fields for usage as planar electrodes, energy conversion components and sensing units. As the most widely applied semiconductor material, the related progress in silicon is of great significance although with large difficulty. Herein, we report a one-step method to achieve flexible and transparent silicon nanowires aerogel membrane. A competitive carrier kinetics involving interfacial trapped carriers and the valence electrons transition is demonstrated, according to the photoelectric performance of a sandwiched graphene/silicon nanowires membrane/Al device, i.e., rapidly positive photoresponse dominated by laser excited free-carriers generation (~ 500 ms) and subsequent slow negative photocurrent evolution due to laser heating involved multi-levels process (> 10 s). These results contribute to fabrication of silicon nanowire self-assembly structures and also the exploration of their optoelectrical properties in flexible and transparent devices.


menu
Abstract
Full text
Outline
About this article

Multi-time scale photoelectric behavior in facile fabricated transparent and flexible silicon nanowires aerogel membrane

Show Author's information Jin Yang§Jingbo He§Xiaobin ZouBo SunYong Sun( )Chengxin Wang( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering Sun Yat-sen UniversityGuangzhou 510275 China

§ Jin Yang and Jingbo He contributed equally to this work.

Abstract

In recent years, transparent and flexible materials have been widely pursued in electronics and optoelectronics fields for usage as planar electrodes, energy conversion components and sensing units. As the most widely applied semiconductor material, the related progress in silicon is of great significance although with large difficulty. Herein, we report a one-step method to achieve flexible and transparent silicon nanowires aerogel membrane. A competitive carrier kinetics involving interfacial trapped carriers and the valence electrons transition is demonstrated, according to the photoelectric performance of a sandwiched graphene/silicon nanowires membrane/Al device, i.e., rapidly positive photoresponse dominated by laser excited free-carriers generation (~ 500 ms) and subsequent slow negative photocurrent evolution due to laser heating involved multi-levels process (> 10 s). These results contribute to fabrication of silicon nanowire self-assembly structures and also the exploration of their optoelectrical properties in flexible and transparent devices.

Keywords: silicon nanowire, chemical vapor deposition, transparent and flexible, nanowires membrane, photoelectric property

References(33)

1

Xue, J.; Song, J. Z.; Dong, Y. H.; Xu, L. M.; Li, J. H.; Zeng, H. B. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci. Bull. 2017, 62, 143–156.

2

Abbas, S.; Kumar, M.; Kim, J. All metal oxide-based transparent and flexible photodetector. Mater. Sci. Semicond. Process. 2018, 88, 86–92.

3

Patel, D. B.; Patel, M.; Chauhan, K. R.; Kim, J.; Oh, M. S.; Kim, J. W. High-performing flexible and transparent photodetector by using silver nanowire-networks. Mater. Res. Bull. 2018, 97, 244–250.

4

Lai, W. E.; Yuan, H.; Fang, H. Y.; Zhu, Y. H.; Wu, H. Z. Ultrathin, highly flexible and optically transparent terahertz polarizer based on transparent conducting oxide. J. Phys. D: Appl. Phys. 2020, 53, 125109.

5

Zheng, Z.; Gan, L.; Li, H. Q.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Y. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv. Funct. Mater. 2015, 25, 5885–5894.

6

Zhou, Y. L.; Chen, J. W.; Yu, R. J.; Li, E. L.; Yan, Y. J.; Huang, J. S.; Wu, S. Y.; Chen, H. P.; Guo, T. L. A full transparent high-performance flexible phototransistor with an ultra-short channel length. J. Mater. Chem. C 2021, 9, 1604–1613.

7

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

8

Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

9

Zhang, X. Y.; Tang, Z.; Tian, D.; Liu, K. Y.; Wu, W. A self-healing flexible transparent conductor made of copper nanowires and polyurethane. Mater. Res. Bull. 2017, 90, 175–181.

10

Jeon, Y. P.; Woo, S. J.; Kim, T. W. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Appl. Surf. Sci. 2018, 434, 375–381.

11

Xu, R. X.; Min, L. L.; Qi, Z. M.; Zhang, X. Y.; Jian, J.; Ji, Y. D.; Qian, F. J.; Fan, J. Y.; Kan, C. X.; Wang, H. Y. et al. Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector. ACS Appl. Mater. Interfaces 2020, 12, 16462–16468.

12

Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151–157.

13

Kukobat, R.; Kamijyou, Y.; Stevic, D.; Furuse, A.; Hayashi, T.; Sakai, T.; Neimark, A. V.; Kaneko, K. Thermally stable near UV-light transparent and conducting SWCNT/glass flexible films. Carbon, 2019, 152, 7–15.

14

Shen, R. Z.; Sun, Z. H.; Shi, Y. B.; Zhou, Y. R.; Guo, W. W.; Zhou, Y. Q.; Yan, H.; Liu, F. Z. Solution processed organic/silicon nanowires hybrid heterojunction solar cells using organosilane incorporated poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate) as hole transport layers. ACS Nano, 2021, 15, 6296–6304.

15

Kim, J.; Kim, H. R.; Lee, H. C.; Kim, K. H.; Hwang, M. S.; Lee, J. M.; Jeong, K. Y.; Park, H. G. Photon-triggered current generation in chemically-synthesized silicon nanowires. Nano Lett. 2019, 19, 1269–1274.

16

Baek, E.; Rim, T.; Schütt, J.; Baek, C. K.; Kim, K.; Baraban, L.; Cuniberti, G. Negative photoconductance in heavily doped Si nanowire field-effect transistors. Nano Lett. 2017, 17, 6727–6734.

17

Sun, B.; Sun, Y.; Wang, C. X. Flexible transparent and free-standing SiC nanowires fabric: Stretchable UV absorber and fast-response UV-A detector. Small. 2018, 14, 1703391.

18

Pang, C. L.; Cui, H.; Yang, G. W.; Wang, C. X. Flexible transparent and free-standing silicon nanowires paper. Nano Lett. 2013, 13, 4708–4714.

19

Jin, R. X.; Yang, Y.; Xing, Y.; Chen, L.; Song, S. Y.; Jin, R. C. Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes. ACS Nano, 2014, 8, 3664–3670.

20

Mulazimoglu, E.; Coskun, S.; Gunoven, M.; Butun, B.; Ozbay, E.; Turan, R.; Unalan, H. E. Silicon nanowire network metal-semiconductor- metal photodetectors. Appl. Phy. Lett. 2013, 103, 083114.

21

Lee, S. T.; Wang, N.; Zhang, Y. F.; Tang, Y. H. Oxide-assisted semiconductor nanowire growth. MRS Bull. 1999, 24, 36–42.

22

Dubrovskii, V. G.; Kim, W.; Piazza, V.; Güniat, L.; Morral, A. F. I. Simultaneous selective area growth of wurtzite and zincblende self- catalyzed GaAs nanowires on silicon. Nano Lett. 2021, 21, 3139–3145.

23

Jung, S. M.; Preston, D. J.; Jung, H. Y.; Deng, Z. T.; Wang, E. N.; Kong, J. Porous Cu nanowire aerosponges from one-step assembly and their applications in heat dissipation. Adv. Mater. 2016, 28, 1413–1419.

24

Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T. Y.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M. et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176.

25

Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano, 2018, 12, 3103–3111.

26

Zhang, A.; Kim, H.; Cheng, J.; Lo, Y. H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 2010, 10, 2117–2120.

27

Hossain, M.; Kumar, G. S.; Prabhava, S. N. B.; Sheerin, E. D.; McCloskey, D.; Acharya, S.; Rao, K. D. M.; Boland, J. J. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 2018, 12, 4727–4735.

28

Lefler, S.; Vizel, R.; Yeor, E.; Granot, E.; Heifler, O.; Kwiat, M.; Krivitsky, V.; Weil, M.; Yaish, Y. E.; Patolsky, F. Multicolor spectral- specific silicon nanodetectors based on molecularly embedded nanowires. Nano Lett. 2018, 18, 190–201.

29

Kim, J.; Lee, H. C.; Kim, K. H.; Hwang, M. S.; Park, J. S.; Lee, J. M.; So, J. P.; Choi, J. H.; Kwon, S. H.; Barrelet, C. J. et al. Photon-triggered nanowire transistors. Nat. Nanotechnol. 2017, 12, 963–968.

30

Lenahan, P. M.; Dressendorfer, P. V. Effect of bias on radiation- induced paramagnetic defects at the silicon-silicon dioxide interface. Appl. Phy. Lett. 1982, 41, 542–544.

31

Schmidt, V.; Senz, S.; Gösele, U. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. App. Phy. A 2007, 86, 187–191.

32

DiMaria, D. J.; Stasiak, J. W. Trap creation in silicon dioxide produced by hot electrons. J. Appl. Phys. 1989, 65, 2342–2356.

33

Yang, H.; Tan, C. W.; Deng, C. Y.; Zhang, R. Y.; Zheng, X. M.; Zhang, X. Z.; Hu, Y. Z.; Guo, X. X.; Wang, G.; Jiang, T. et al. Bolometric effect in Bi2O2Se photodetectors. Small, 2019, 15, 1904482.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2021
Revised: 09 June 2021
Accepted: 22 June 2021
Published: 11 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1801255, 91963210, and 51772339).

Return