Journal Home > Volume 15 , Issue 2

The two-dimensional transition metal dichalcogenides (TMDs) have attracted intense interest as an atomically thin semiconductor channel for the continued transistor scaling. However, with a dangling bond free surface, it has been a key challenge to reliably integrate high-quality gate dielectrics on TMDs. In particular, the atomic layer deposition of dielectrics on TMDs typically features highly non-uniform nucleation and produces a highly rough or porous dielectric film with rich pinholes that are prone to further damage during the gate integration process. Herein we report a van der Waals (vdW) integration route towards highly reliable gate metal integration on porous dielectrics. The physical lamination process employed by the vdW integration avoids the direct deposition of metal electrodes into porous dielectrics to ensure reliable gate integration and produce low gate leakage devices. The electrical measurements demonstrate the vdW integrated MoS2 top gate devices exhibit substantially reduced gate leakage current that is about 3–5 orders of magnitude smaller than that with deposited metal electrodes. Furthermore, we show the vdW integration process can be used to create high performance top-gated MoS2 transistors with ultrathin Al2O3 dielectrics down to 1 nm, representing the ultimate dielectric scaling for TMDs transistors. This study demonstrates that vdW integration can enable highly reliable gate integration on relatively low quality dielectrics on TMDs, and opens an interesting pathway to high-performance top-gate transistors using dangling bond free two-dimensional (2D) semiconductors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultimate dielectric scaling of 2D transistors via van der Waals metal integration

Show Author's information Weiqi Dang1Bei Zhao1Chang Liu3Xiangdong Yang1Lingan Kong2Zheyi Lu2Bo Li1,2Jia Li1Hongmei Zhang1Wanying Li2Shun Shi2Ziyue Qin1Lei Liao3Xidong Duan1( )Yuan Liu2 ( )
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan UniversityChangsha 410082 China
Hunan Key Laboratory of Two-Dimensional Materials, Department of Applied Physics, School of Physics and Electronics Hunan UniversityChangsha 410082 China
Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics Hunan UniversityChangsha 410082 China

Abstract

The two-dimensional transition metal dichalcogenides (TMDs) have attracted intense interest as an atomically thin semiconductor channel for the continued transistor scaling. However, with a dangling bond free surface, it has been a key challenge to reliably integrate high-quality gate dielectrics on TMDs. In particular, the atomic layer deposition of dielectrics on TMDs typically features highly non-uniform nucleation and produces a highly rough or porous dielectric film with rich pinholes that are prone to further damage during the gate integration process. Herein we report a van der Waals (vdW) integration route towards highly reliable gate metal integration on porous dielectrics. The physical lamination process employed by the vdW integration avoids the direct deposition of metal electrodes into porous dielectrics to ensure reliable gate integration and produce low gate leakage devices. The electrical measurements demonstrate the vdW integrated MoS2 top gate devices exhibit substantially reduced gate leakage current that is about 3–5 orders of magnitude smaller than that with deposited metal electrodes. Furthermore, we show the vdW integration process can be used to create high performance top-gated MoS2 transistors with ultrathin Al2O3 dielectrics down to 1 nm, representing the ultimate dielectric scaling for TMDs transistors. This study demonstrates that vdW integration can enable highly reliable gate integration on relatively low quality dielectrics on TMDs, and opens an interesting pathway to high-performance top-gate transistors using dangling bond free two-dimensional (2D) semiconductors.

Keywords: MoS2, van der Waals (vdW) integration, dielectric scaling, transfer gate, metal oxide semiconductor field effect transistor (MOSFET)

References(45)

1

Waldrop, M. M. The chips are down for Moore's law. Nature 2016, 530, 144–147.

2

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

3

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

4

Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

5

Cheng, Z. H.; Price, K.; Franklin, A. D. Contacting and gating 2-D nanomaterials. IEEE Trans. Electron Devices 2018, 65, 4073–4083.

6

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M; Liao, L.; Chen, S. S; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

7

Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore's law. Nature 2019, 567, 169–170.

8

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

9

Song, X. J.; Xu, J. P.; Liu, L.; Deng, Y. H.; Lai, P. T.; Tang, W. M. Optimizing Al-doped ZrO2 as the gate dielectric for MoS2 field- effect transistors. Nanotechnology 2020, 31, 135206.

10

Goyal, N.; Parihar, N.; Jawa, H.; Mahapatra, S.; Lodha, S. Accurate threshold voltage reliability evaluation of thin Al2O3 top-gated dielectric black phosphorous FETs using ultrafast measurement pulses. ACS Appl. Mater. Interfaces 2019, 11, 23673–23680.

11

Cheng, L. X.; Lee, J.; Zhu, H.; Ravichandran, A. V.; Wang, Q. X; Lucero, A. T.; Kim, M. J.; Wallace, R. M.; Colombo, L.; Kim, J. Sub-10 nm tunable hybrid dielectric engineering on MoS2 for two-dimensional material-based devices. ACS Nano 2017, 11, 10243–10252.

12

Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. Z.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.

13

Xia, P. K.; Feng, X. W.; Ng, R. J.; Wang, S. J; Chi, D. Z.; Li, C. Q.; He, Z. B.; Liu, X. K.; Ang, K. W. Impact and origin of interface states in MOS capacitor with monolayer MoS2 and HfO2 high-k dielectric. Sci. Rep. 2017, 7, 40669.

14

Kang, Y. S.; Kang, H. K.; Kim, D. K.; Jeong, K. S.; Baik, M.; An, Y.; Kim, H.; Song, J. D.; Cho, M. H. Structural and electrical properties of EOT HfO2 (< 1 nm) grown on InAs by atomic layer deposition and its thermal stability. ACS Appl. Mater. Interfaces 2016, 8, 7489–7498.

DOI
15

Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.

16

Park, T.; Kim, H.; Leem, M.; Ahn, W.; Choi, S.; Kim, J.; Uh, J.; Kwon, K.; Jeong, S. J.; Park, S. et al. Atomic layer deposition of Al2O3 on MoS2, WS2, WSe2, and h-BN: Surface coverage and adsorption energy. RSC Adv. 2017, 7, 884–889.

17

Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246.

18

Li, T. R.; Tu, T.; Sun, Y. W.; Fu, H. X.; Yu, J.; Xing, L.; Wang, Z. A.; Wang, H. M.; Jia, R. D.; Wu, J. X. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 2020, 3, 473–478.

19

Giannazzo, F. Engineering 2D heterojunctions with dielectrics. Nat. Electron. 2019, 2, 54–55.

20

Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y. Y.; Lanza, M. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater. 2020, 30, 1901971.

21

Li, N.; Wei, Z.; Zhao, J.; Wang, Q. Q.; Shen, C.; Wang, S. P.; Tang, J.; Yang, R.; Shi, D. X.; Zhang, G. Y. Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 2019, 6, 1802055.

22

Xiao, M. M.; Qiu, C. G.; Zhang, Z. Y.; Peng, L. M. Atomic-layer- deposition growth of an ultrathin HfO2 film on graphene. ACS Appl. Mater. Interfaces 2017, 9, 34050–34056.

23

Illarionov, Y. Y.; Banshchikov, A. G.; Polyushkin, D. K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger-Pollach, M.; Steiger-Thirsfeld, A. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019, 2, 230–235.

24

Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385.

25

Fisichella, G.; Schiliro, E.; Franco, S. D.; Fiorenza, P.; Lo Nigro, R.; Roccaforte, F.; Ravesi, S.; Giannazzo, F. Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces 2017, 9, 7761–7771.

26

Park, Y. H.; Kim, M. H.; Kim, S. B.; Jung, H. J.; Chae, K.; Ahn, Y. H.; Park, J. Y.; Rotermund, F.; Lee, S. W. Enhanced nucleation of high-k dielectrics on graphene by atomic layer deposition. Chem. Mater. 2016, 28, 7268–7275.

27

Acharya, J.; Goul, R.; Romine, D.; Sakidja, R.; Wu, J. Effect of Al2O3 seed-layer on the dielectric and electrical properties of ultrathin MgO films fabricated using in situ atomic layer deposition. ACS Appl. Mater. Interfaces 2019, 11, 30368–30375.

28

Zhu, H.; Qin, X. Y.; Cheng, L. X.; Azcatl, A.; Kim, J.; Wallace, R. M. Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 2016, 8, 19119–19126.

29

Azcatl, A.; Mcdonnell, S.; Santosh, K. C.; Peng, X.; Dong, H.; Qin, X. Y.; Addou, R.; Mordi, G. I.; Lu, N.; Kim, J. et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 2014, 104, 111601.

30

Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; Xiao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.

31

Park, S.; Kim, S. Y.; Choi, Y.; Kim, M.; Shin, H.; Kim, J.; Choi, W. Interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone-treated multilayer MoS2 Crystals. ACS Appl. Mater. Interfaces 2016, 8, 11189–11193.

32

Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.

33

Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

34

Kim, D.; Choi, J. Y.; Ryu, S. W.; Kim, W. B. Improved interface and electrical properties by inserting an ultrathin SiO2 buffer layer in the Al2O3/Si heterojunction. Adv. Funct. Mater. 2019, 29, 1807271.

35

Yang, W.; Sun, Q. Q.; Geng, Y.; Chen, L.; Zhou, P.; Ding, S. J.; Zhang, D. W. The integration of Sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci. Rep. 2015, 5, 11921.

36

Park, J. W.; Kwon, S.; Kwon, J. H.; Kim, C. Y.; Choi, K. C. Low- leakage fiber-based field-effect transistors with an Al2O3-MgO nanolaminate as gate insulator. ACS Appl. Electron. Mater. 2019, 1, 1400–1407.

37

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

38

Kong, L. A.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

39

Wang, Y. L.; Wan, Z.; Qian, Q.; Liu, Y.; Kang, Z.; Fan, Z.; Wang, P. Q.; Wang, Y. K.; Li, C.; Jia, C. C. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 2020, 15, 768–775.

40

Chandrasekar, H.; Ahadi, K.; Razzak, T.; Stemmer, S.; Rajan, S. High current density SmTiO3/SrTiO3 field-effect transistors. ACS Appl. Electron. Mater. 2020, 2, 510–516.

41

Jiang, B.; Yang, Z. Y.; Liu, X. Q.; Liu, Y.; Liao, L. Interface engineering for two-dimensional semiconductor transistors. Nano Today 2019, 25, 122–134.

42

Liao, L.; Bai, J. W.; Cheng, R.; Lin, Y. C.; Jiang, S.; Huang, Y.; Duan, X. F. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 2010, 10, 1917–1921.

43

Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High- field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516–4522.

44

Tu, T.; Zhang, Y. C.; Li, T. R.; Yu, J.; Liu, L. M.; Wu, J. X.; Tan, C. W.; Tang, J. L.; Laing, Y.; Zhang, C. C. et al. Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 2020, 20, 7469–7475.

45

Liu, Y.; Wang, P. Q.; Wang, Y. L.; Huang, Y.; Duan, X. F. Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors. Nano Res. 2020, 13, 1943–1947.

File
12274_2021_3708_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 April 2021
Revised: 09 June 2021
Accepted: 22 June 2021
Published: 05 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

Y. L. acknowledges the financial support from the National Key R & D Program of China (No. 2018YFA0703700) and the National Natural Science Foundation of China (Nos. 51802090, 61874041, 51991340, and 51991341). X. D. acknowledges the support from the National Natural Science Foundation of China (No. 51991343). W. D. thanks Gonglei Shao and Hang Liu for AFM measurement, Liqiang Zhang and Xiaohua Shen for modifying the format of the paper, and Weisheng Li, Guanhua Yang, Yang Liu and Zhong Wan for the technique support of dual-gate measurement.

Return