Journal Home > Volume 15 , Issue 2

Understanding charge transport mechanisms in thin-film transistors based on random networks of single-wall carbon nanotubes (SWCNT-TFTs) is essential for further advances to improve the potential for various nanoelectronic applications. Herein, a comprehensive investigation of the two-dimensional (2D) charge transport mechanism in SWCNT-TFTs is reported by analyzing the temperature-dependent electrical characteristics determined from the direct-current and non-quasi-static transient measurements at 80-300 K. To elucidate the time-domain charge transport characteristics of the random networks in the SWCNTs, an empirical equation was derived from a theoretical trapping model, and a carrier velocity distribution was determined from the differentiation of the transient response. Furthermore, charge trapping and de-trapping in shallow- and deep-traps in SWCNT-TFTs were analyzed by investigating charge transport based on their trapping/de-trapping rate. The comprehensive analysis of this study provides fundamental insights into the 2D charge transport mechanism in TFTs based on random networks of nanomaterial channels.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Comprehensive analysis of two-dimensional charge transport mechanism in thin-film transistors based on random networks of single-wall carbon nanotubes using transient measurements

Show Author's information Hyeonwoo Shin1,§Sang-Joon Park2,§Byeong-Cheol Kang2Tae-Jun Ha2( )
Department of Electrical Engineering and Computer Science, Inter-university Semiconductor Research CenterSeoul National UniversitySeoul08826Korea
Department of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Korea

§ Hyeonwoo Shin and Sang-Joon Park contributed equally to this work.

Abstract

Understanding charge transport mechanisms in thin-film transistors based on random networks of single-wall carbon nanotubes (SWCNT-TFTs) is essential for further advances to improve the potential for various nanoelectronic applications. Herein, a comprehensive investigation of the two-dimensional (2D) charge transport mechanism in SWCNT-TFTs is reported by analyzing the temperature-dependent electrical characteristics determined from the direct-current and non-quasi-static transient measurements at 80-300 K. To elucidate the time-domain charge transport characteristics of the random networks in the SWCNTs, an empirical equation was derived from a theoretical trapping model, and a carrier velocity distribution was determined from the differentiation of the transient response. Furthermore, charge trapping and de-trapping in shallow- and deep-traps in SWCNT-TFTs were analyzed by investigating charge transport based on their trapping/de-trapping rate. The comprehensive analysis of this study provides fundamental insights into the 2D charge transport mechanism in TFTs based on random networks of nanomaterial channels.

Keywords: single-wall carbon nanotube, random networks, two-dimensional (2D) charge transport, time-domain transient measurements, charge trapping/de-trapping, shallow-/deep-traps

References(56)

1

Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038-1044.

2

Liu, C.; Zhang, D. D.; Duan, L. A novel anthracene derivative with an asymmetric structure as an electron transport material for stable Rec. 2020 blue organic light-emitting diodes. J. Inf. Dis. 2020, 21, 197-201.

3

Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118-151.

4

Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107-1110.

5

Nikitenko, V. R.; von Seggern, H.; Bässler, H. Non-equilibrium transport of charge carriers in disordered organic materials. J. Phys. Condens. Matter 2007, 19, 136210.

6

Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-952.

7

Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high- mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.

8

Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319-1335.

9

Fratini, S.; Xie, H.; Hulea, I. N.; Ciuchi, S.; Morpurgo, A. F. Current saturation and Coulomb interactions in organic single-crystal transistors. New J. Phys. 2008, 10, 033031.

10

Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.

11

Un, H. I.; Cheng, P.; Lei, T.; Yang, C. Y.; Wang, J. Y.; Pei, J. Charge-trapping-induced non-ideal behaviors in organic field-effect transistors. Adv. Mater. 2018, 30, 1800017.

12

Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J. S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 2016, 10, 9543-9549.

13

Mathijssen, S. G. J.; Cölle, M.; Gomes, H.; Smits, E. C. P.; de Boer, B.; McCulloch, I.; Bobbert, P. A.; de Leeuw, D. M. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 2007, 19, 2785-2789.

14

Kang, B. H.; Jung, S. J.; Hong, S.; Lee, I. S.; Hong, S.; Kim, S.; Kim, H. J. Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Dis. 2020, 21, 123-130.

15

Park, J.; Hur, J. H.; Jeon, S. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by Pulse I-V method. Nanotechnology 2018, 29, 175704.

16

Yang. Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510-2519.

17

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

18

Jeon, J. Y.; Kang, B. C.; Ha, T. J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci. 2020, 514, 145956.

19

Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G. H.; Zhu, C. X.; Li, S. C.; Beausoleil, R.; Wong, H. S. P.; Huang, T. C. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.

20

Deshmukh, M. A.; Kang, B. C.; Jeon, J. Y.; Ha, T. J. Stable dispersions of single-wall carbon nanotubes using self-assembled amphiphilic copolymer surfactants for fabricating wafer-scale devices. ACS Appl. Nano Mater. 2020, 3, 8829-8839.

21

Poudel, Y. R.; Li, W. Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7-34.

22

Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

23

Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361-394.

24

Brohmann, M.; Rother, M.; Schießl, S. P.; Preis, E.; Allard, S.; Scherf, U.; Zaumseil, J. Temperature-dependent charge transport in polymer-sorted semiconducting carbon nanotube networks with different diameter distributions. J. Phys. Chem. C 2018, 122, 19886-19896.

25

Weis, M.; Lin, J.; Taguchi, D.; Manaka, T.; Iwamoto, M. Analysis of transient currents in organic field effect transistor: The time-of- flight method. J. Phys. Chem. C 2009, 113, 18459-18461.

26

Manaka, T.; Liu, F.; Weis, M.; Iwamoto, M. Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors. J. Appl. Phys. 2010, 107, 043712.

27

Dunn, L.; Dodabalapur, A. Temperature dependent transient velocity and mobility studies in an organic field effect transistor. J. Appl. Phys. 2010, 107, 113714.

28

Engel-Herbert, R.; Hwang, Y.; Stemmer, S. Comparison of methods to quantify interface trap densities at dielectric/Ⅲ-V semiconductor interfaces. J. Appl. Phys. 2010, 108, 124101.

29

Li, H. T.; Huang, P.; Gao, B.; Chen, B.; Liu, X. Y.; Kang, J. F. A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electron Device Lett. 2014, 35, 211-213.

30

Brohmann, M.; Berger, F. J.; Matthiesen, M.; Schießl, S. P.; Schneider, S.; Zaumseil, J. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 2019, 13, 7323-7332.

31

Ha, T. J.; Chen, K.; Chuang, S.; Yu, K. M.; Kiriya, D.; Javey, A. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 2015, 15, 392-397.

32

Vellingiri, L.; Annamalai, K.; Kandasamy, R.; Kombiah, I. Single- walled carbon nanotubes/lithium borohydride composites for hydrogen storage: Role of in situ formed LiB(OH)4, Li2CO3 and LiBO2 by oxidation and nitrogen annealing. RSC Adv. 2019, 9, 31483-31496.

33

Oh, J. W.; Heo, J.; Kim, T. H. An electrochemically modulated single- walled carbon nanotube network for the development of a transparent flexible sensor for dopamine. Sens. Actuators B Chem. 2018, 267, 438-447.

34

Kalbac, M.; Hsieh, Y. P.; Farhat, H.; Kavan, L.; Hofmann, M.; Kong, J.; Dresselhaus, M. S. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. Nano Lett. 2010, 10, 4619-4626.

35

Telg, H.; Duque, J. G.; Staiger, M.; Tu, X. M.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. Chiral index dependence of the G+ and G- Raman modes in semiconducting carbon nanotubes. ACS Nano 2012, 6, 904-911.

36

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

37

Jin, S. H.; Shin, J.; Cho, I. T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.

38

Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276-2284.

39

Gao, J.; Loo, Y. L. Temperature-dependent electrical transport in polymer-sorted semiconducting carbon nanotube networks. Adv. Funct. Mater. 2015, 25, 105-110.

40

McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J. Improved organic thin-film transistor performance using novel self-assembled monolayers. Appl. Phys. Lett. 2006, 88, 073505.

41

Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

42

Horowitz, G.; Hajlaoui, M. E.; Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 2000, 87, 4456.

43

Ha, T. J.; Sonar, P.; Cobb, B.; Dodabalapur, A. Charge transport and density of trap states in balanced high mobility ambipolar organic thin-film transistors. Org. Electron. 2012, 13, 136-141.

44

Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327.

45

Okubo, M.; Tanaka, Y.; Zhou, H. S.; Kudo, T.; Honma, I. Determination of activation energy for Li ion diffusion in electrodes. J. Phys. Chem. B 2009, 113, 2840-2847.

46

Harada, Y.; Eriguchi, K.; Niwa, M.; Watanabe, T.; Ohdomari, I. Impact of structural strained layer near SiO2/Si interface on activation energy of time-dependent dielectric breakdown. Jpn. J. Appl. Phys. 2000, 39, 4687.

47

Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.

48

Kim, W. S.; Moon, Y. K.; Kim, K. T.; Shin, S. Y.; Ahn, B. D.; Lee, J. H.; Park, J. W. The influence of hafnium doping on bias stability in zinc oxide thin film transistors. Thin Solid Films 2011, 519, 5161-5164.

49

Chen, K. Y.; Yang, C. C.; Huang, C. Y.; Su, Y. K. ALD Al2O3 gate dielectric on the reduction of interface trap density and the enhanced photo-electric performance of IGO TFT. RSC Adv. 2020, 10, 9902- 9906.

50

Chen, G.; Xu, Z. Q. Charge trapping and detrapping in polymeric materials. J. Appl. Phys. 2009, 106, 123707.

51

Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599-4608.

52

Germs, W. C.; van der Holst, J. J. M.; van Mensfoort, S. L. M.; Bobbert, P. A.; Coehoorn, R. Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states. Phys. Rev. B 2011, 84, 165210.

53

McNeill, C. R.; Hwang, I.; Greenham, N. Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects. J. Appl. Phys. 2009, 106, 024507.

54

Jafari, S.; Zhu, Y.; Rougieux, F.; Guzman, J. A. T. D.; Markevich, V. P.; Peaker, A. R.; Hameiri, Z. On the correlation between light-induced degradation and minority carrier traps in boron-doped czochralski silicon. ACS Appl. Mater. Interfaces 2021, 13, 6140-6146.

55

Park, B.; Jang, J.; Kim, H.; Seo, J.; Yoo, H.; Kim, T.; Hong, Y. Dense assembly of finely patterned semiconducting single-walled carbon nanotubes via a selective transfer method of nanotube- attracting layers. ACS Appl. Mater. Interfaces 2020, 12, 38441-38450.

56

Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527-1533.

File
12274_2021_3697_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2021
Revised: 10 June 2021
Accepted: 17 June 2021
Published: 02 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2021R1A2C2012855).

Return