Journal Home > Volume 15 , Issue 2

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3, 4, 9, 10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-Ⅱ band alignment was directly determined with a valence band offset of ~ 1.69 eV, and an apparent conduction band offset of ~ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Band alignment and interlayer hybridization in monolayer organic/ WSe2 heterojunction

Show Author's information Yanping Guo1,§Linlu Wu2,§Jinghao Deng1,§Linwei Zhou2Wei Jiang1Shuangzan Lu1Da Huo1Jiamin Ji1Yusong Bai1Xiaoyu Lin1Shunping Zhang1Hongxing Xu1Wei Ji2( )Chendong Zhang1( )
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhan430027China
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devicesaaaaaaaaa,Renmin University of China,Beijing,100872,China;

§ Yanping Guo, Linlu Wu, and Jinghao Deng contributed equally to this work.

Abstract

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3, 4, 9, 10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-Ⅱ band alignment was directly determined with a valence band offset of ~ 1.69 eV, and an apparent conduction band offset of ~ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.

Keywords: two-dimensional materials, organic/transition metal dichalcogenide (TMD) heterojunction, interlayer hybridization, band diagram

References(49)

1

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

2

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

3

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.

4

Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785-4791.

5

Gong, C.; Zhang, H. J.; Wang, W. H.; Colombo, L.; Wallace, R. M.; Cho, K. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513.

6

Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

7

Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.

8

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.

9

Park, J. H.; Sanne, A.; Guo, Y. Z.; Amani, M.; Zhang, K. H.; Movva, H. C. P.; Robinson, J. A.; Javey, A.; Robertson, J.; Banerjee, S. K. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 2017, 3, e1701661.

10

Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792-5797.

11

Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

12

Surrente, A.; Dumcenco, D.; Yang, Z.; Kuc, A.; Jing, Y.; Heine, T.; Kung, Y. C.; Maude, D. K.; Kis, A.; Plochocka, P. Defect healing and charge transfer-mediated valley polarization in MoS2/MoSe2/MoS2 trilayer van der Waals heterostructures. Nano Lett. 2017, 17, 4130-4136.

13

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

14

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.

15

Reese, C.; Bao Z. N. Organic single-crystal field-effect transistors. Mater. Today 2007, 10, 20-27.

16

Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496-503.

17

McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 2011, 332, 570-573.

18

Kobitski, A. Y.; Scholz, R.; Zahn, D. R. T.; Wagner, H. P. Time-resolved photoluminescence study of excitons in α-PTCDA as a function of temperature. Phys. Rev. B 2003, 68, 155201.

19

Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun. 2019, 10, 5589.

20

Cheng, C. H.; Li, Z. D.; Hambarde, A.; Deotare, P. B. Efficient energy transfer across organic-2D inorganic heterointerfaces. ACS Appl. Mater. Inter. 2018, 10, 39336-39342.

21

Gu, J.; Liu, X.; Lin, E. C.; Lee, Y. H.; Forrest, S. R.; Menon, V. M. Dipole-aligned energy transfer between excitons in two-dimensional transition metal dichalcogenide and organic semiconductor. ACS Photonics 2018, 5, 100-104.

22

Vélez, S.; Ciudad, D.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G. A.; Casanova, F.; van der Zant, H. S. J; Castellanos-Gomez, A. et al. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. Nanoscale 2015, 7, 15442-15449.

23

Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J. M.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 2016, 16, 497-503.

24

Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563-571.

25

Arramel; Yin, X. M.; Wang, Q. X.; Zheng, Y. J.; Song, Z. B.; bin Hassan, M. H.; Qi, D. Y.; Wu, J. S.; Rusydi, A.; Wee, A. T. S. Molecular alignment and electronic structure of N, N'-Dibutyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide molecules on MoS2 Surfaces. ACS Appl. Mater. Inter. 2017, 9, 5566-5573.

26

Song, Z. B.; Schultz, T.; Ding, Z. J.; Lei, B.; Han, C.; Amsalem, P.; Lin, T. T.; Chi, D. Z.; Wong, S. L.; Zheng, Y. J. et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor. ACS Nano 2017, 11, 9128-9135.

27

Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241-3264.

28

Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B.; Cao, Y. J. et al. Efficient and layer-dependent exciton pumping across atomically thin organic-inorganic type-Ⅰ heterostructures. Adv. Mater. 2018, 30, e1803986.

29

Chen, X. Q.; Liu, X. L.; Wu, B.; Nan, H. Y.; Guo, H.; Ni, Z. H.; Wang, F. Q.; Wang, X. M.; Shi, Y.; Wang, X. R. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett. 2017, 17, 6391-6396.

30

Hirade, M.; Nakanotani, H.; Yahiro, M.; Adachi, C. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells. ACS Appl. Mater. Inter. 2011, 3, 80-83.

31

Obaidulla, S. M.; Habib, M. R.; Khan, Y.; Kong, Y. H.; Liang, T.; Xu, M. S. MoS2 and perylene derivative based type-Ⅱ heterostructure: bandgap engineering and giant photoluminescence enhancement. Adv. Mater. Inter. 2020, 7, 1901197.

32

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

33

Habib, M. R.; Li, H. F.; Kong, Y. H.; Liang, T.; Obaidulla, S. M.; Xie, S.; Wang, S. P.; Ma, X. Y.; Su, H. X.; Xu, M. S. Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor. Nanoscale 2018, 10, 16107-16115.

34

Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M. W.; Wan, Y.; Mei, J. G.; Huang, L. B. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 2018, 4, eaao3104.

35

Zhang, H. M.; Gustafsson, J. B.; Johansson, L. S. O. STM study of the electronic structure of PTCDA on Ag/Si(111)-3×3. Chem. Phys. Lett. 2010, 485, 69-76.

36

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

37

Schmitz-Hübsch, T.; Fritz, T.; Sellam, F.; Staub, R.; Leo, K. Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study. Phys. Rev. B 1997, 55, 7972-7976.

38

Wagner, T.; Bannani, A.; Bobisch, C.; Karacuban, H.; Möller, R. The initial growth of PTCDA on Cu(111) studied by STM. J. Phys. Condens. Matter 2007, 19, 056009.

39

Zhang, C. D.; Chen, Y. X.; Johnson, A.; Li, M. Y.; Li, L. J.; Mende, P. C.; Feenstra, R. M.; Shih, C. K. Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 2015, 15, 6494-6500.

40

Zheng, Y. J.; Huang, Y. L.; Chen, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z. et al. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476-2484.

41

Wang, Q. Y.; Zhang, W. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys. Condens. Matter 2013, 25, 095002.

42

Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.

43

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

44

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

45

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

46

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

47

Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101(R).

48

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2009, 22, 022201.

49

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

File
12274_2021_3648_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2021
Revised: 21 May 2021
Accepted: 02 June 2021
Published: 09 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018FYA0305800 and 2018YFA0703700), the National Natural Science Foundation of China (Nos. 11774268 and 11974012), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB30000000). W. J. gratefully acknowledges financial support from the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Nos. 16XNLQ01 and 19XNQ025). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China, Shanghai Supercomputer Center.

Return