Journal Home > Volume 15 , Issue 2

Metallocorrole macrocycles that represent a burgeoning class of attractive metal-complexes from the porphyrinoid family, have attracted great interest in recent years owing to their unique structure and excellent performance revealed in many fields, yet further functionalization through incorporating these motifs into porous nanomaterials employing the bottom-up approach is still scarce and remains synthetically challenging. Here, we report the targeted synthesis of porous organic polymers (POPs) constructed from custom-designed Mn and Fe-corrole complex building units, respectively denoted as CorPOP-1(Mn) and CorPOP-1(FeCl). Specifically, the robust CorPOP-1(Mn) bearing Mn-corrole active centers displays superior heterogeneous catalytic activity toward solvent-free cycloaddition of carbon dioxide (CO2) with epoxides to form cyclic carbonates under mild reaction conditions as compared with the homogeneous counterpart. CorPOP-1(Mn) can be easily recycled and does not show significant loss of reactivity after seven successive cycles. This work highlights the potential of metallocorrole-based porous solid catalysts for targeting CO2 transformations, and would provide a guide for the task-specific development of more corrole-based multifunctional materials for extended applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion

Show Author's information Yanming Zhao1,2Yunlei Peng3Chuan Shan4Zhou Lu2Lukasz Wojtas4Zhenjie Zhang3Bao Zhang1( )Yaqing Feng1,5Shengqian Ma2( )
School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
Department of ChemistryUniversity of North TexasDenton, Texas76201USA
College of ChemistryNankai UniversityTianjin300071China
Department of ChemistryUniversity of South FloridaTampa, Florida33620USA
Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China

Abstract

Metallocorrole macrocycles that represent a burgeoning class of attractive metal-complexes from the porphyrinoid family, have attracted great interest in recent years owing to their unique structure and excellent performance revealed in many fields, yet further functionalization through incorporating these motifs into porous nanomaterials employing the bottom-up approach is still scarce and remains synthetically challenging. Here, we report the targeted synthesis of porous organic polymers (POPs) constructed from custom-designed Mn and Fe-corrole complex building units, respectively denoted as CorPOP-1(Mn) and CorPOP-1(FeCl). Specifically, the robust CorPOP-1(Mn) bearing Mn-corrole active centers displays superior heterogeneous catalytic activity toward solvent-free cycloaddition of carbon dioxide (CO2) with epoxides to form cyclic carbonates under mild reaction conditions as compared with the homogeneous counterpart. CorPOP-1(Mn) can be easily recycled and does not show significant loss of reactivity after seven successive cycles. This work highlights the potential of metallocorrole-based porous solid catalysts for targeting CO2 transformations, and would provide a guide for the task-specific development of more corrole-based multifunctional materials for extended applications.

Keywords: CO2 conversion, heterogeneous catalysis, heterogenization, porous organic polymers (POPs), corrole, porphyrinoid derivatives

References(55)

1

Urbani, M.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T. Meso- substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 2014, 114, 12330-12396.

2

Shimizu, D.; Osuka, A. Porphyrinoids as a platform of stable radicals. Chem. Sci. 2018, 9, 1408-1423.

3

Singh, S.; Aggarwal, A.; Bhupathiraju, N. V. S. D. K.; Arianna, G.; Tiwari, K.; Drain, C. M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015, 115, 10261-10306.

4

Baglia, R. A.; Zaragoza, J. P. T.; Goldberg, D. P. Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes. Chem. Rev. 2017, 117, 13320-13352.

5

Almeida-Marrero, V.; van de Winckel, E.; Anaya-Plaza, E.; Torres, T.; de la Escosura, A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem. Soc. Rev. 2018, 47, 7369-7400.

6

Koszarna, B.; Gryko, D. T. Efficient synthesis of meso-substituted corroles in a H2O-MeOH mixture. J. Org. Chem. 2006, 71, 3707-3717.

7

Thomas, K. E.; Alemayehu, A. B.; Conradie, J.; Beavers, C. M.; Ghosh, A. The structural chemistry of metallocorroles: Combined X-ray crystallography and quantum chemistry studies afford unique insights. Acc. Chem. Res. 2012, 45, 1203-1214.

8

Ghosh, A. Electronic structure of corrole derivatives: Insights from molecular structures, spectroscopy, electrochemistry, and quantum chemical calculations. Chem. Rev. 2017, 117, 3798-3881.

9

Mahammed, A.; Gross, Z. Corroles as triplet photosensitizers. Coord. Chem. Rev. 2019, 379, 121-132.

10

Aviv, I.; Gross, Z. Corrole-based applications. Chem. Commun. 2007, 1987-1999.

11

Haber, A.; Gross, Z. Catalytic antioxidant therapy by metallodrugs: Lessons from metallocorroles. Chem. Commun. 2015, 51, 5812- 5827.

12

Zhang, W.; Lai, W. Z.; Cao, R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717-3797.

13

Teo, R. D.; Hwang, J. Y.; Termini, J.; Gross, Z.; Gray, H. B. Fighting cancer with corroles. Chem. Rev. 2017, 117, 2711-2729.

14

Aviv-Harel, I.; Gross, Z. Coordination chemistry of corroles with focus on main group elements. Coord. Chem. Rev. 2011, 255, 717-736.

15

Nardis, S.; Mandoj, F.; Stefanelli, M.; Paolesse, R. Metal complexes of corrole. Coord. Chem. Rev. 2019, 388, 360-405.

16

Lei, H. T.; Li, X. L.; Meng, J.; Zheng, H. Q.; Zhang, W.; Cao, R. Structure effects of metal corroles on energy-related small molecule activation reactions. ACS Catal. 2019, 9, 4320-4344.

17

Mahammed, A.; Gray, H. B.; Meier-Callahan, A. E.; Gross, Z. Aerobic oxidations catalyzed by chromium corroles. J. Am. Chem. Soc. 2003, 125, 1162-1163.

18

Haber, A.; Mahammed, A.; Fuhrman, B.; Volkova, N.; Coleman, R.; Hayek, T.; Aviram, M.; Gross, Z. Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice. Angew. Chem. 2008, 120, 8014-8018.

19

Mahammed, A.; Gross, Z. Highly efficient catalase activity of metallocorroles. Chem. Commun. 2010, 46, 7040-7042.

20

Kuwano, T.; Kurahashi, T.; Matsubara, S. Iron corrole-catalyzed[4 + 2] cycloaddition of dienes and aldehydes. Chem. Lett. 2013, 42, 1241- 1243.

21

Tiffner, M.; Gonglach, S.; Haas, M.; Schöfberger, W.; Waser, M. CO2 fixation with epoxides under mild conditions with a cooperative metal corrole/quaternary ammonium salt catalyst system. Chem. Asian J. 2017, 12, 1048-1051.

22

Guo, M.; Lee, Y. M.; Gupta, R.; Seo, M. S.; Ohta, T.; Wang, H. H.; Liu, H. Y.; Dhuri, S. N.; Sarangi, R.; Fukuzumi, S. et al. Dioxygen activation and O-O bond formation reactions by manganese corroles. J. Am. Chem. Soc. 2017, 139, 15858-15867.

23

Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

24

Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468-8535.

25

Liu, J. G.; Wang, N.; Ma, L. L. Recent advances in covalent organic frameworks for catalysis. Chem. Asian J. 2020, 15, 338-351.

26

Sun, Q.; Dai, Z. F.; Meng, X. J.; Xiao, F. S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018-6034.

27

Banerjee, S.; Anayah, R. I.; Gerke, C. S.; Thoi, V. S. From molecules to porous materials: Integrating discrete electrocatalytic active sites into extended frameworks. ACS Cent. Sci. 2020, 6, 1671-1684

28

Zhang, Y. G.; Ying, J. Y. Main-chain organic frameworks with advanced catalytic functionalities. ACS Catal. 2015, 5, 2681-2691.

29

Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, aaa8075.

30

Lee, J. S. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171-2214.

31

Tian, Y. Y.; Zhu, G. S. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934-8986.

32

Zhao, Y. M.; Qi, S. B.; Niu, Z.; Peng, Y. L.; Shan, C.; Verma, G.; Wojtas, L.; Zhang, Z. J.; Zhang, B.; Feng, Y. Q. et al. Robust corrole- based metal-organic frameworks with rare 9‑connected Zr/Hf-oxo clusters. J. Am. Chem. Soc. 2019, 141, 14443-14450.

33

Friedman, A.; Landau, L.; Gonen, S.; Gross, Z.; Elbaz, L. Efficient bio- inspired oxygen reduction electrocatalysis with electropolymerized cobalt corroles. ACS Catal. 2018, 8, 5024-5031.

34

Khan, R.; Idris, M.; Tuncel, D. Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso- phenyl-2, 5-thienylene linked porphyrin oligomers and polymers. Org. Biomol. Chem. 2015, 13, 10496-10504.

35

Tang, A. L.; Li, L. J.; Lu, Z. H.; Huang, J. H.; Jia, H.; Zhan, C. L.; Tan, Z. A.; Li, Y. F.; Yao, J. N. Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star- shaped TPA-DPP backbone. J. Mater. Chem. A 2013, 1, 5747-5757.

36

Gershman, Z.; Goldberg, I.; Gross, Z. DNA Binding and catalytic properties of positively charged corroles. Angew. Chem. , Int. Ed. 2007, 46, 4320-4324.

37

Liu, H. Y.; Chen, L.; Yam, F.; Zhan, H. Y.; Ying, X.; Wang, X. L.; Jiang, H. F.; Chang, C. K. Reductive demetalation of manganese corroles: The substituent effect. Chin. Chem. Lett. 2008, 19, 1000- 1003.

38

Zhao, Y. M.; Dai, W. H.; Peng, Y. L.; Niu, Z.; Sun, Q.; Shan, C.; Yang, H.; Verma, G.; Wojtas, L.; Yuan, D. Q. et al. A corrole-based covalent organic framework featuring desymmetrized topology. Angew. Chem. , Int. Ed. 2020, 59, 4354-4359.

39

Ju, P. Y.; Wu, S. J.; Su, Q.; Li, X. D.; Liu, Z. Q.; Li, G. H.; Wu, Q. L. Salen-porphyrin-based conjugated microporous polymer supported Pd nanoparticles: Highly efficient heterogeneous catalysts for aqueous C-C coupling reactions. J. Mater. Chem. A 2019, 7, 2660-2666.

40

Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434-504.

41

Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Zhao, B. A noble-metal- free metal-organic framework (MOF) catalyst for the highly efficient conversion of CO2 with propargylic alcohols. Angew. Chem. , Int. Ed. 2019, 58, 577-581.

42

Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Highly efficient conversion of propargylic amines and CO2 catalyzed by noble-metal-free[Zn116] nanocages. Angew. Chem. , Int. Ed. 2020, 132, 8664-8671.

43

Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications. Green Chem. 2019, 21, 406-448.

44

Shaikh, R. R.; Pornpraprom, S.; D'Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 2018, 8, 419-450.

45

Dong, J.; Cui, P.; Shi, P. F.; Cheng, P.; Zhao, B. Ultrastrong alkali- resisting lanthanide-zeolites assembled by[Ln60] nanocages. J. Am. Chem. Soc. 2015, 137, 15988-15991.

46

Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem., Int. Ed. 2018, 57, 15948-15982.

47

Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244-254.

48

Liu, Q.; Wu, L. P.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.

49

Guo, W. S.; Gómez, J. E.; Cristòfol, À.; Xie, J. N.; Kleij, A. W. Catalytic transformations of functionalized cyclic organic carbonates. Angew. Chem. , Int. Ed. 2018, 57, 13735-13747.

50

Song, L.; Jiang, Y. X.; Zhang, Z.; Gui, Y. Y.; Zhou, X. Y.; Yu, D. G. CO2 = CO +[O]: Recent advances in carbonylation of C-H bonds with CO2. Chem. Commun. 2020, 56, 8355-8367.

51

Ema, T.; Miyazaki, Y.; Shimonishi, J.; Maeda, C.; Hasegawa, J. Y. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: Structural optimization and mechanistic study. J. Am. Chem. Soc. 2014, 136, 15270-15279.

52

Jin, L. L.; Jing, H. W.; Chang, T.; Bu, X. L.; Wang, L.; Liu, Z. L. Metal porphyrin/phenyltrimethylammonium tribromide: Highly efficient catalysts for coupling reaction of CO2 and epoxides. J. Mol. Catal. A: Chem. 2007, 261, 262-266.

53

Bai, D. S.; Duan, S. H.; Hai, L.; Jing, H. W. Carbon dioxide fixation by cycloaddition with epoxides, catalyzed by biomimetic metalloporphyrins. ChemCatChem 2012, 4, 1752-1758.

54

Johnson, J. A.; Petersen, B. M.; Kormos, A.; Echeverría, E.; Chen, Y. S.; Zhang, J. A new approach to non-coordinating anions: Lewis acid enhancement of porphyrin metal centers in a zwitterionic metal- organic framework. J. Am. Chem. Soc. 2016, 138, 10293-10298.

55

Alkordi, M. H.; Weseliński, Ł. J.; D'Elia, V.; Barman, S.; Cadiau, A.; Hedhili, M. N.; Cairns, A. J.; AbdulHalim, R. G.; Basset, J. M.; Eddaoudi, M. CO2 conversion: The potential of porous-organic polymers (POPs) for catalytic CO2-epoxide insertion. J. Mater. Chem. A 2016, 4, 7453-7460.

File
12274_2021_3617_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2021
Revised: 20 May 2021
Accepted: 22 May 2021
Published: 08 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science foundation of China (NSFC) (22078241) and China Scholarship Council (CSC) (No. 201706250095). Partial support from the Robert A. Welch Foundation (B-0027) is also acknowledged (SM).

Return