Journal Home > Volume 15 , Issue 1

Two-dimensional layered transition metal dichalcogenides (TMDCs) have demonstrated a huge potential in the broad fields of optoelectronic devices, logic electronics, electronic integration, as well as neural networks. To take full advantage of TMDC characteristics and efficiently design the device structures, one of the most key processes is to control their p-/n-type modulation. In this review, we summarize the p-/n-type modulation of TMDCs based on diverse strategies consisting of intrinsic defect tailoring, substitutional doping, surface charge transfer, chemical intercalation, electrostatic modulation, and dielectric interface engineering. The modulation mechanisms and comparisons of these strategies are analyzed together with a discussion of their corresponding device applications in electronics and optoelectronics. Finally, challenges and outlooks for p-/n-type modulation of TMDCs are presented to provide references for future studies.


menu
Abstract
Full text
Outline
About this article

p-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices

Show Author's information Songyu Li1Yang Ma2Nabonswende Aida Nadege Ouedraogo2Famin Liu1( )Congya You2Wenjie Deng2Yongzhe Zhang2( )
School of PhysicsBeihang UniversityBeijing100191China
Key Laboratory of Advanced Functional Materials, Ministry of EducationCollege of Materials Science and Engineering, Beijing University of TechnologyBeijing100124China

Abstract

Two-dimensional layered transition metal dichalcogenides (TMDCs) have demonstrated a huge potential in the broad fields of optoelectronic devices, logic electronics, electronic integration, as well as neural networks. To take full advantage of TMDC characteristics and efficiently design the device structures, one of the most key processes is to control their p-/n-type modulation. In this review, we summarize the p-/n-type modulation of TMDCs based on diverse strategies consisting of intrinsic defect tailoring, substitutional doping, surface charge transfer, chemical intercalation, electrostatic modulation, and dielectric interface engineering. The modulation mechanisms and comparisons of these strategies are analyzed together with a discussion of their corresponding device applications in electronics and optoelectronics. Finally, challenges and outlooks for p-/n-type modulation of TMDCs are presented to provide references for future studies.

Keywords: transition metal dichalcogenides, electronic devices, optoelectronic devices, p-/n-type modulation, doping method

References(230)

1

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545-557.

2

Yin, X. G.; Zhang, Y. K.; Zhu, H. L.; Wang, G. L.; Li, J. J.; Du, A. Y.; Li, C.; Zhao, L. H.; Huang, W. X.; Yang, H. et al. Vertical sandwich gate-all-around field-effect transistors with self-aligned high-k metal gates and small effective-gate-length variation. IEEE Electron Device Lett. 2020, 41, 8-11.

3

Zhang, Z. H.; Xu, G. B.; Zhang, Q. Z.; Hou, Z. Z.; Li, J. J.; Kong, Z. Z.; Zhang, Y. K.; Xiang, J. J.; Xu, Q. X.; Wu, Z. H. et al. FinFET with improved subthreshold swing and drain current using 3-nm ferroelectric Hf0.5Zr0.5O2. IEEE Electron Device Lett. 2019, 40, 367-370.

4

Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy- efficient electronic switches. Nature 2011, 479, 329-337.

5

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595-602.

6

Son, Y.; Frost, B.; Zhao, Y. K.; Peterson, R. L. Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nat. Electron. 2019, 2, 540-548.

7

Jeong, J. W.; Choi, Y. E.; Kim, W. S.; Park, J. H.; Kim, S.; Shin, S.; Lee, K.; Chang, J.; Kim, S. J.; Kim, K. R. Tunnelling-based ternary metal-oxide-semiconductor technology. Nat. Electron. 2019, 2, 307-312.

8

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.

9

Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141-148.

10

Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458-465.

11

Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y. Y.; Lanza, M. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater. 2020, 30, 1901971.

12

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507-518.

13

Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378-388.

14

Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.

15

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

16

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231-236.

17

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

18

Song, S.; Sim, Y.; Kim, S. Y.; Kim, J. H.; Oh, I.; Na, W.; Lee, D. H.; Wang, J.; Yan, S. L.; Liu, Y. N. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit. Nat. Electron. 2020, 3, 207-215.

19

He, Q. Y.; Li, P. J.; Wu, Z. H.; Yuan, B.; Luo, Z. T.; Yang, W. L.; Liu, J.; Cao, G. Q.; Zhang, W. F.; Shen, Y. L. et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv. Mater. 2019, 31, 1901578.

20

Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

21

Shim, J.; Bae, S. H.; Kong, W.; Lee, D.; Qiao, K.; Nezich, D.; Park, Y. J.; Zhao, R. K.; Sundaram, S.; Li, X. et al. Controlled crack propagation for atomic precision handling of wafer-scale two- dimensional materials. Science 2018, 362, 665-670.

22

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229-233.

23

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.

24

Sangwan, V. K.; Beck, M. E.; Henning, A.; Luo, J. J.; Bergeron, H.; Kang, J. M.; Balla, I.; Inbar, H.; Lauhon, L. J.; Hersam, M. C. Self- aligned van der Waals heterojunction diodes and transistors. Nano Lett. 2018, 18, 1421-1427.

25

Chen, M. L.; Sun, X. D.; Liu, H.; Wang, H. W.; Zhu, Q. B.; Wang, S. S.; Du, H. F.; Dong, B. J.; Zhang, J.; Sun, Y. et al. A FinFET with one atomic layer channel. Nat. Commun. 2020, 11, 1205.

26

Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366-371.

27

Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina- Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62-66.

28

Chai, Y. In-sensor computing for machine vision. Nature 2020, 579, 32-33.

29

Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.

30

Massicotte, M.; Vialla, F.; Schmidt, P.; Lundeberg, M. B.; Latini, S.; Haastrup, S.; Danovich, M.; Davydovskaya, D.; Watanabe, K.; Taniguchi, T. et al. Dissociation of two-dimensional excitons in monolayer WSe2. Nat. Commun. 2018, 9, 1633.

31

Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80-84.

32

Zhao, Y. D.; Xu, K.; Pan, F.; Zhou, C. J.; Zhou, F. C.; Chai, Y. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 2017, 27, 1603484.

33

Ma, Y.; Ajayan, P. M.; Yang, S. B.; Gong, Y. J. Recent advances in synthesis and applications of 2D junctions. Small 2018, 14, 1801606.

34

Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos- Gomez, A.; van der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3339-3358.

35

Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.

36

Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26-51.

37

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.

38

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

39

Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115-12123.

40

Singh, A.; Singh, A. K. Origin of n-type conductivity of monolayer MoS2. Phys. Rev. B 2019, 99, 121201(R).

41

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.

42

Park, K.; Kang, H.; Koo, S.; Lee, D. E.; Ryu, S. Redox-governed charge doping dictated by interfacial diffusion in two-dimensional materials. Nat. Commun. 2019, 10, 4931.

43

Park, S.; Schultz, T.; Xu, X. M.; Wegner, B.; Aljarb, A.; Han, A. L.; Li, L. J.; Tung, V. C.; Amsalem, P.; Koch, N. Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Commun. Phys. 2019, 2, 109.

44

Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

45

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588-1596.

46

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, 1600069.

47

Kaushik, N.; Nipane, A.; Basheer, F.; Dubey, S.; Grover, S.; Deshmukh, M. M.; Lodha, S. Schottky barrier heights for Au and Pd contacts to MoS2. Appl. Phys. Lett. 2014, 105, 113505.

48

Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014, 14, 1714-1720.

49

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.

50

Ma, J.; Yu, Z. G.; Zhang, Y. W. Tuning deep dopants to shallow ones in 2D semiconductors by substrate screening: The case of XS (X = Cl, Br, I) in MoS2. Phys. Rev. B 2017, 95, 165447.

51

Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109.

52

Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712.

53

Chen, Y.; Huang, S. X.; Ji, X.; Adepalli, K.; Yin, K. D.; Ling, X.; Wang, X. W.; Xue, J. M.; Dresselhaus, M.; Kong, J. et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 2018, 12, 2569-2579.

54

Seo, S. Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S. Y.; Yeom, H. W.; Choi, H.; Jo, M. H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512-517.

55

Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715-7736.

56

Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

57

Zhang, Z. Z.; Wang, Z. W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y. M.; Liu, Q.; Wu, H. Q.; Zhou, P. Memory materials and devices: From concept to application. InfoMat 2020, 2, 261-290.

58

Zhu, W. J.; Low, T.; Wang, H.; Ye, P. D.; Duan, X. F. Nanoscale electronic devices based on transition metal dichalcogenides. 2D Mater. 2019, 6, 032004.

59

Ren, Y.; Yang, X. Y.; Zhou, L.; Mao, J. Y.; Han, S. T.; Zhou, Y. Recent advances in ambipolar transistors for functional applications. Adv. Funct. Mater. 2019, 29, 1902105.

60

Ci, P. H.; Tian, X. Z.; Kang, J.; Salazar, A.; Eriguchi, K.; Warkander, S.; Tang, K. C.; Liu, J. M.; Chen, Y. B.; Tongay, S. et al. Chemical trends of deep levels in van der Waals semiconductors. Nat. Commun. 2020, 11, 5373.

61

Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928-8936.

62

Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon Plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216-10219.

63

McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880-2888.

64

Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S. M.; Lin, Z.; Zhou, C. J.; Perea-López, N.; Elias, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

65

Lin, Y. C.; Björkman, T.; Komsa, H. P.; Teng, P. Y.; Yeh, C. H.; Huang, F. S.; Lin, K. H.; Jadczak, J.; Huang, Y. S.; Chiu, P. W. et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 2015, 6, 6736.

66

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

67

Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.

68

Lin, C. P.; Chen, P. C.; Huang, J. H.; Lin, C. T.; Wang, D.; Lin, W. T.; Cheng, C. C.; Su, C. J.; Lan, Y. W.; Hou, T. H. Local modulation of electrical transport in 2D layered materials induced by electron beam irradiation. ACS Appl. Electron. Mater. 2019, 1, 684-691.

69

Mahjouri-Samani, M.; Liang, L. B.; Oyedele, A.; Kim, Y. S.; Tian, M. K.; Cross, N.; Wang, K.; Lin, M. W.; Boulesbaa, A.; Rouleau, C. M. et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2-x crystals. Nano Lett. 2016, 16, 5213-5220.

70

Zhang, Y. W.; Ma, K. K.; Zhao, C.; Hong, W.; Nie, C. J.; Qiu, Z. J.; Wang, S. An ultrafast WSe2 photodiode based on a lateral p-i-n homojunction. ACS Nano 2021, 15, 4405-4415.

71

Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

72

Seo, S. Y.; Moon, G.; Okello, O. F. N.; Park, M. Y.; Han, C.; Cha, S.; Choi, H.; Yeom, H. W.; Choi, S. Y.; Park, J. et al. Reconfigurable photo- induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 2021, 4, 38-44.

73

Zhang, X. K.; Liu, B. S.; Gao, L.; Yu, H. H.; Liu, X. Z.; Du, J. L.; Xiao, J. K.; Liu, Y. H.; Gu, L.; Liao, Q. L. et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 2021, 12, 1522.

74

Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)- induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

75

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. A.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

76

Chee, S. S.; Lee, W. J.; Jo, Y. R.; Cho, M. K.; Chun, D. W.; Baik, H.; Kim, B. J.; Yoon, M. H.; Lee, K.; Ham, M. H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147.

77

Komsa, H. P.; Krasheninnikov, A. V. Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 2015, 91, 125304.

78

Shang, M. H.; Hou, H. L.; Zheng, J. J.; Yang, Z. B.; Zhang, J.; Wei, S. H.; Duan, X. M.; Yang, W. Y. Elimination of S vacancy as the cause for the n-type behavior of MoS2 from the first-principles perspective. J. Phys. Chem. Lett. 2018, 9, 6032-6037.

79

Onofrio, N.; Guzman, D.; Strachan, A. Novel doping alternatives for single-layer transition metal dichalcogenides. J. Appl. Phys. 2017, 122, 185102.

80
Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci., in press, DOI: 10.1002/advs.202004249.https://doi.org/10.1002/advs.202004249
DOI
81

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668-1681.

82

Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90-204.

83

Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976-6982.

84

Laskar, M. R.; Nath, D. N.; Ma, L.; Lee Ⅱ, E. W.; Lee, C. H.; Kent, T.; Yang, Z. H.; Mishra, R.; Roldan, M. A.; Idrobo, J. C. et al. p-type doping of MoS2 thin films using Nb. Appl. Phys. Lett. 2014, 104, 092104.

85

Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. P-type doping in large- area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276-6282.

86

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735-9743.

87

Sasaki, S.; Kobayashi, Y.; Liu, Z.; Suenaga, K.; Maniwa, Y.; Miyauchi, Y.; Miyata, Y. Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 2016, 9, 071201.

88

Jin, Y. Y.; Zeng, Z. Y.; Xu, Z. W.; Lin, Y. C.; Bi, K. X.; Shao, G. L.; Hu, T. S.; Wang, S. S.; Li, S. S.; Suenaga, K. et al. Synthesis and transport properties of degenerate P-Type Nb-doped WS2 monolayers. Chem. Mater. 2019, 31, 3534-3541.

89

Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768-10775.

90

Gao, H.; Suh, J.; Cao, M. C.; Joe, A. Y.; Mujid, F.; Lee, K. H.; Xie, S. E.; Poddar, P.; Lee, J. U.; Kang, K. et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 2020, 20, 4095-4101.

91

Svatek, S. A.; Antolin, E.; Lin, D. Y.; Frisenda, R.; Reuter, C.; Molina-Mendoza, A. J.; Muñoz, M.; Agraït, N.; Ko, T. S.; de Lara, D. P. et al. Gate tunable photovoltaic effect in MoS2 vertical p-n homostructures. J. Mater. Chem. C 2017, 5, 854-861.

92

Zhang, L. L.; Wang, G.; Zhang, Y. B.; Cao, Z. P.; Wang, Y.; Cao, T. J.; Wang, C.; Cheng, B.; Zhang, W. Q.; Wan, X. G. et al. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano 2020, 14, 10265-10275.

93

Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326-4335.

94

Wu, S. X.; Zeng, Y.; Zeng, X. B.; Wang, S. B.; Hu, Y. S.; Wang, W. Z.; Yin, S.; Zhou, G. T.; Jin, W.; Ren, T. T. et al. High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen Plasma doping. 2D Mater. 2019, 6, 025007.

95

Chen, M. K.; Nam, H.; Wi, S.; Ji, L.; Ren, X.; Bian, L. F.; Lu, S. L.; Liang, X. G. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 2013, 103, 142110.

96

Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.

97

Zhang, F.; Lu, Y. F.; Schulman, D. S.; Zhang, T. Y.; Fujisawa, K.; Lin, Z.; Lei, Y.; Elias, A. L.; Das, S.; Sinnott, S. B. et al. Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport. Sci. Adv. 2019, 5, eaav5003.

98

Wi, S.; Kim, H.; Chen, M. K.; Nam, H.; Guo, L. J.; Meyhofer, E.; Liang, X. G. Enhancement of photovoltaic response in multilayer MoS2 induced by Plasma doping. ACS Nano 2014, 8, 5270-5281.

99

Cao, Q.; Dai, Y. W.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Realizing stable p-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 2017, 9, 18215-18221.

100

Tang, B. S.; Yu, Z. G.; Huang, L.; Chai, J. W.; Wong, S. L.; Deng, J.; Yang, W. F.; Gong, H.; Wang, S. J.; Ang, K. W. et al. Direct n- to p-type channel conversion in monolayer/few-layer WS2 field- effect transistors by atomic nitrogen treatment. ACS Nano 2018, 12, 2506-2513.

101

Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen Plasma treatment. Small 2019, 15, 1901791.

102

Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128- 2137.

103

Haynes, K.; Murray, R.; Weinrich, Z.; Zhao, X.; Chiappe, D.; Sutar, S.; Radu, I.; Hatem, C.; Perry, S. S.; Jones, K. S. Modulating the resistivity of MoS2 through low energy phosphorus plasma implantation. Appl. Phys. Lett. 2017, 110, 262102.

104

Kim, E.; Ko, C.; Kim, K.; Chen, Y. B.; Suh, J.; Ryu, S. G.; Wu, K. D.; Meng, X. Q.; Suslu, A.; Tongay, S. et al. Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Adv. Mater. 2016, 28, 341-346.

105

Chang, R. J.; Sheng, Y. W.; Ryu, G. H.; Mkhize, N.; Chen, T. X.; Lu, Y.; Chen, J.; Lee, J. K.; Bhaskaran, H.; Warner, J. H. Postgrowth substitutional tin doping of 2D WS2 crystals using chemical vapor deposition. ACS Appl. Mater. Interfaces 2019, 11, 24279-24288.

106

Zhang, K. H.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; Zhang, C. X.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.

107

Tian, X. Z.; Kim, D. S.; Yang, S. Z.; Ciccarino, C. J.; Gong, Y. J.; Yang, Y.; Yang, Y.; Duschatko, B.; Yuan, Y. K.; Ajayan, P. M. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 2020, 19, 867-873.

108

Cai, Z. Y.; Shen, T. Z.; Zhu, Q.; Feng, S. M.; Yu, Q. M.; Liu, J. M.; Tang, L.; Zhao, Y.; Wang, J. W.; Liu, B. L. et al. Dual-additive assisted chemical vapor deposition for the growth of Mn-Doped 2D MoS2 with tunable electronic properties. Small 2020, 16, 1903181.

109

Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636- 11644.

110

Lin, X. Q.; Ni, J. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. J. Appl. Phys. 2014, 116, 044311.

111

Wang, J. Q.; Sun, F.; Yang, S.; Li, Y. T.; Zhao, C.; Xu, M. W.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 092401.

112

Fang, Q. L.; Zhao, X. M.; Huang, Y. H.; Xu, K. W.; Min, T.; Chu, P. K.; Ma, F. Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2. Phys. Chem. Chem. Phys. 2018, 20, 553-561.

113

Li, Q.; Zhao, X. X.; Deng, L. J.; Shi, Z. T.; Liu, S.; Wei, Q. L.; Zhang, L. B.; Lu, H. P.; Gao, W. B.; Huang, W. et al. Enhanced valley zeeman splitting in Fe-Doped monolayer MoS2. ACS Nano 2020, 14, 4636-4645.

114

Bai, Z. T.; Zhang, L.; Liu, L. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 2016, 8, 8761-8772.

115

Jang, C. W.; Kim, J. H.; Lee, D. H.; Shin, D. H.; Kim, S.; Choi, S. H.; Hwang, E.; Elliman, R. G. Effect of stopping-layer-assisted boron-ion implantation on the electrical properties of graphene: Interplay between strain and charge doping. Carbon 2017, 118, 343-347.

116

Pham, V. P.; Yeom, G. Y. Recent advances in doping of molybdenum disulfide: Industrial applications and future prospects. Adv. Mater. 2016, 28, 9024-9059.

117

Chang, Y. M.; Yang, S. H.; Lin, C. Y.; Chen, C. H.; Lien, C. H.; Jian, W. B.; Ueno, K.; Suen, Y. W.; Tsukagoshi, K.; Lin, Y. F. Reversible and precisely controllable p/n-Type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 2018, 30, 1706995.

118

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.

119

Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.

120

McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 2014, 8, 6265-6272.

121

Yang, S.; Lee, G.; Kim, J. Selective p-doping of 2D WSe2 via UV/ ozone treatments and its application in field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 955-961.

122

Xie, Y.; Wu, E. X.; Hu, R. X.; Qian, S. B.; Feng, Z. H.; Chen, X. J.; Zhang, H.; Xu, L. Y.; Hu, X. D.; Liu, J. et al. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment. Nanoscale 2018, 10, 12436-12444.

123

Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852-2862.

124

Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332-9340.

125

Li, H. M.; Lee, D.; Qu, D. S.; Liu, X. C.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 6564.

126

Liu, X. C.; Qu, D. S.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 2016, 28, 2345-2351.

127

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

128

Liu, X. C.; Qu, D. S.; Choi, M. S.; Lee, C.; Kim, H.; Yoo, W. J. Homogeneous molybdenum disulfide tunnel diode formed via chemical doping. Appl. Phys. Lett. 2018, 112, 183103.

129

Zhang, K.; Zhai, J. Y.; Wang, Z. L. A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezo- phototronic effect. 2D Mater. 2018, 5, 035038.

130

Jang, H.; Seok, Y.; Choi, Y. T.; Cho, S. H.; Watanabe, K.; Taniguchi, T.; Lee, K. High-performance near-infrared photodetectors based on surface-doped InSe. Adv. Funct. Mater. 2021, 31, 2006788.

131

Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465-471.

132

Kim, J.; Heo, K.; Kang, D. H.; Shin, C.; Lee, S.; Yu, H. Y.; Park, J. H. Rhenium diselenide (ReSe2) near-infrared photodetector: Performance enhancement by selective p-doping technique. Adv. Sci. 2019, 6, 1901255.

133

Park, J. H.; Rai, A.; Hwang, J.; Zhang, C. X.; Kwak, I.; Wolf, S. F.; Vishwanath, S.; Liu, X. Y.; Dobrowolska, M.; Furdyna, J. et al. Band structure engineering of layered WSe2 via one-step chemical functionalization. ACS Nano 2019, 13, 7545-7555.

134

Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.

135

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.

136

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.

137

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.

138

Qi, D. Y.; Han, C.; Rong, X. M.; Zhang, X. W.; Chhowalla, M.; Wee, A. T. S.; Zhang, W. J. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 2019, 13, 9464-9472.

139

Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron- doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.

140

Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable P- and N-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.

141

Lim, J. Y.; Pezeshki, A.; Oh, S.; Kim, J. S.; Lee, Y. T.; Yu, S.; Hwang, D. K.; Lee, G. H.; Choi, H. J.; Im, S. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer- deposition-induced doping. Adv. Mater. 2017, 29, 1701798.

142

Hemanjaneyulu, K.; Kumar, J.; Shrivastava, M. MoS2 doping using potassium iodide for reliable contacts and efficient FET operation. IEEE Trans. Electron Devices 2019, 66, 3224-3228.

143

Khalil, H. M. W.; Khan, M. F.; Eom, J.; Noh, H. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces 2015, 7, 23589-23596.

144

Yang, Y. J.; Huo, N. J.; Li, J. B. Gate-tunable and high optoelectronic performance in multilayer WSe2 P-N diode. J. Mater. Chem. C 2018, 6, 11673-11678.

145

Sun, M. X.; Xie, D.; Sun, Y. L.; Li, W. W.; Ren, T. L. Locally hydrazine doped WSe2 p-n junction toward high-performance photodetectors. Nanotechnology 2018, 29, 015203.

146

Lee, I.; Rathi, S.; Li, L. J.; Lim, D.; Khan, M. A.; Kannan, E. S.; Kim, G. H. Non-degenerate n-type doping by hydrazine treatment in metal work function engineered WSe2 field-effect transistor. Nanotechnology 2015, 26, 455203.

147

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.

148

Wan, D.; Jiang, B.; Huang, H.; Chen, C.; Abliz, A.; Ye, C.; Liu, X. Q.; Zou, X. M; Li, G. L.; Flandre, D. et al. High voltage gain WSe2 complementary compact inverter with buried gate for local doping. IEEE Electron Device Lett. 2020, 41, 944-947.

149

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.

150

Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.

151

Tang, Y. C.; Wang, Z.; Wang, P.; Wu, F.; Wang, Y. M.; Chen, Y. F.; Wang, H. L.; Peng, M.; Shan, C. X.; Zhu, Z. H. et al. WSe2 photovoltaic device based on intramolecular p-n junction. Small 2019, 15, 1805545.

152

Du, Y. C.; Liu, H.; Neal, A. T.; Si, M. W.; Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 2013, 34, 1328-1330.

153

Arnold, A. J.; Schulman, D. S.; Das, S. Thickness trends of electron and hole conduction and contact carrier injection in surface charge transfer doped 2D field effect transistors. ACS Nano 2020, 14, 13557-13568.

154

Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J. Work function engineering of graphene electrode via chemical doping. ACS Nano 2010, 4, 2689-2694.

155

Rajapakse, M.; Karki, B.; Abu, U. O.; Pishgar, S.; Musa, M. R. K.; Riyadh, S. M. S.; Yu, M.; Sumanasekera, G.; Jasinski, J. B. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater. Appl. 2021, 5, 30.

156

Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294-299.

157

Kim, D. K.; Hong, S. B.; Jeong, K.; Lee, C.; Kim, H.; Cho, M. H. P-N junction diode using Plasma boron-doped black phosphorus for high-performance photovoltaic devices. ACS Nano 2019, 13, 1683-1693.

158

Fan, X. B.; Xu, P. T.; Zhou, D. K.; Sun, Y. F.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956-5960.

159

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.

160

Liu, C.; Lian, C. S.; Liao, M. H.; Wang, Y.; Zhong, Y.; Ding, C.; Li, W.; Song, C. L.; He, K.; Ma, X. C. et al. Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys. Rev. Mater. 2018, 2, 094001.

161

Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742-6765.

162

Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622-627.

163

Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D. S.; Cui, Y. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 13773- 13779.

164

Kumar, A.; Roy, J. N. A physics-based threshold voltage model for junction-less double gate FETs having vertical structural and doping asymmetry. IEEE Trans. Electron Devices 2019, 66, 3640-3645.

165

Liu, C. S.; Chen, H. W.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y. G.; Zeng, X. Y.; Zhang, D. W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662-667.

166

Beck, M. E.; Hersam, M. C. Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 2020, 14, 6498-6518.

167

Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot carrier-assisted intrinsic photoresponse in graphene. Science 2011, 334, 648-652.

168

Chiu, H. Y.; Perebeinos, V.; Lin, Y. M.; Avouris, P. Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering. Nano Lett. 2010, 10, 4634-4639.

169

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.

170

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257-261.

171

Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos- Gomez, A. Photovoltaic and photothermoelectric effect in a double- gated WSe2 device. Nano Lett. 2014, 14, 5846-5852.

172

Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo- Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.

173

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two- dimensional homojunctions. Nat. Electron. 2020, 3, 383-390.

174

Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385.

175

Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039-7047.

176

Illarionov, Y. Y.; Banshchikov, A. G.; Polyushkin, D. K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger- Pollach, M.; Steiger-Thirsfeld, A. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019, 2, 230-235.

177

Wen, C.; Banshchikov, A. G.; Illarionov, Y. Y.; Frammelsberger, W.; Knobloch, T.; Hui, F.; Sokolov, N. S.; Grasser, T.; Lanza, M. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 2020, 32, 2002525.

178

Knobloch, T.; Illarionov, Y. Y.; Ducry, F.; Schleich, C.; Wachter, S.; Watanabe, K.; Taniguchi, T.; Mueller, T.; Waltl, M.; Lanza, M. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 2021, 4, 98-108.

179

Wang, J. I. J.; Yang, Y. F.; Chen, Y. A.; Watanabe, K.; Taniguchi, T.; Churchill, H. O. H.; Jarillo-Herrero, P. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. 2015, 15, 1898-1903.

180

Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594-3601.

181

Zhang, Y. J.; Ye, J. T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y. Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 2013, 13, 3023-3028.

182

Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136-1140.

183

Wu, C. L.; Yuan, H. T.; Li, Y. B.; Gong, Y. J.; Hwang, H. Y.; Cui, Y. Gate- induced metal-insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett. 2018, 18, 2387-2392.

184

Meng, Y. Z.; Wang, T. M.; Jin, C. H.; Li, Z. P.; Miao, S. N.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Song, F. Q.; Shi, S. F. Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nat. Commun. 2020, 11, 2640.

185

Li, J. F.; Chen, X. Q.; Xiao, Y.; Li, S. Y.; Zhang, G. Q.; Diao, X. G.; Yan, H.; Zhang, Y. Z. A tunable floating-base bipolar transistor based on a 2D material homojunction realized using a solid ionic dielectric material. Nanoscale 2019, 11, 22531-22538.

186

Wu, E. X.; Xie, Y.; Zhang, J.; Zhang, H.; Hu, X. D.; Liu, J.; Zhou, C. W.; Zhang, D. H. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 2019, 5, eaav3430.

187

Wu, E. X.; Xie, Y.; Liu, Q. Z.; Hu, X. D.; Liu, J.; Zhang, D. H.; Zhou, C. W. Photoinduced doping to enable tunable and high- performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 2019, 13, 5430-5438.

188

Zhang, P. F.; Li, D.; Chen, M. Y.; Zong, Q. J.; Shen, J.; Wan, D. Y.; Zhu, J. T.; Zhang, Z. X. Floating-gate controlled programmable non-volatile black phosphorus PNP junction memory. Nanoscale 2018, 10, 3148-3152.

189

Tian, H.; Li, L. S.; Mohammad, M. A.; Wang, X. F.; Yang, Y.; Ren, T. L. High-quality reconfigurable black phosphorus p-n junctions. IEEE Trans. Electron Devices 2018, 65, 5118-5122.

190

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901-906.

191

Ju, L.; Velasco, J. Jr.; Huang, E.; Kahn, S.; Nosiglia, C.; Tsai, H. Z.; Yang, W.; Taniguchi, T.; Watanabe, K.; Zhang, Y. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 2014, 9, 348-352.

192

Wang, Y.; Liu, E. F.; Gao, A. Y.; Cao, T. J.; Long, M. S.; Pan, C.; Zhang, L. L.; Zeng, J. W.; Wang, C. Y.; Hu, W. D. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 2018, 12, 9513-9520.

193

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.

194

Li, D.; Chen, M. Y.; Zong, Q. J.; Zhang, Z. X. Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353-6359.

195

Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Nguyen, V. L.; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two- terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.

196

Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43-50.

197

Xiao, Z. Y.; Song, J. F.; Ferry, D. K.; Ducharme, S.; Hong, X. Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS2. Phys. Rev. Lett. 2017, 118, 236801.

198

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.

199

Lee, S. J.; Lin, Z. Y.; Huang, J.; Choi, C. S.; Chen, P.; Liu, Y.; Guo, J.; Jia, C. C.; Wang, Y. L.; Wang, L. Y. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 2020, 3, 630-637.

200

Shi, W.; Kahn, S.; Jiang, L. L.; Wang, S. Y.; Tsai, H. Z.; Wong, D.; Taniguchi, T.; Watanabe, K.; Wang, F.; Crommie, M. F. et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron. 2020, 3, 99-105.

201

Liu, Y.; Guo, J.; He, Q. Y.; Wu, H.; Cheng, H. C.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Vertical charge transport and negative transconductance in multilayer molybdenum disulfides. Nano Lett. 2017, 17, 5495-5501.

202

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

203

Park, H. Y.; Lim, M. H.; Jeon, J.; Yoo, G.; Kang, D. H.; Jang, S. K.; Jeon, M. H.; Lee, Y.; Cho, J. H.; Yeom, G. Y. et al. Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation. ACS Nano 2015, 9, 2368-2376.

204

Behura, S.; Berry, V. Interfacial nondegenerate doping of MoS2 and other two-dimensional semiconductors. ACS Nano 2015, 9, 2227-2230.

205

Utama, M. I. B.; Kleemann, H.; Zhao, W. Y.; Ong, C. S.; da Jornada, F. H.; Qiu, D. Y.; Cai, H.; Li, H.; Kou, R.; Zhao, S. H. et al. A dielectric- defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2019, 2, 60-65.

206

Wang, F. K.; Pei, K.; Li, Y.; Li, H. Q.; Zhai, T. Y. 2D homojunctions for electronics and optoelectronics. Adv. Mater. 2021, 33, 2005303.

207

Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43-53.

208

Zhao, Q. H.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. InSe Schottky diodes based on van der Waals contacts. Adv. Funct. Mater. 2020, 30, 2001307.

209

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.

210

Lee, C. S.; Oh, S. J.; Heo, H.; Seo, S. Y.; Kim, J.; Kim, Y. H.; Kim, D.; Ngome Okello, O. F.; Shin, H.; Sung, J. H. et al. Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs. Nano Lett. 2019, 19, 1814-1820.

211

LaGasse, S. W.; Dhakras, P.; Watanabe, K.; Taniguchi, T.; Lee, J. U. Gate-tunable graphene-WSe2 heterojunctions at the schottky- mott limit. Adv. Mater. 2019, 31, 1901392.

212

Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

213

Agnihotri, P.; Dhakras, P.; Lee, J. U. Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains. Nano Lett. 2016, 16, 4355-4360.

214
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley: Hoboken, New Jersey, 2006.https://doi.org/10.1002/0470068329
DOI
215

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

216

Wang, Y. A.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2020, 14, 1682-1697.

217

Yeh, C. H.; Liang, Z. Y.; Lin, Y. C.; Chen, H. C.; Fan, T.; Ma, C. H.; Chu, Y. H.; Suenaga, K.; Chiu, P. W. Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 2020, 14, 985-992.

218

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711-717.

219

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.

220
Li, Z. C.; Shu, W. N.; Li, Q. Q.; Xu, W. T.; Zhang, Z. W.; Li, J.; Wang, Y. L.; Liu, Y. Y.; Yang, J. H.; Chen, K. Q. et al. Nondegenerate P-type in-doped SnS2 monolayer transistor. Adv. Electron. Mater. in press, DOI: 10.1002/aelm.202001168.https://doi.org/10.1002/aelm.202001168
DOI
221

Tang, J.; Wei, Z.; Wang, Q. Q.; Wang, Y.; Han, B.; Li, X. M.; Huang, B. Y.; Liao, M. Z.; Liu, J. Y.; Li, N. et al. In situ oxygen doping of monolayer MoS2 for novel electronics. Small 2020, 16, 2004276.

222

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

223

Pu, J.; Takenobu, T. Monolayer transition metal dichalcogenides as light sources. Adv. Mater. 2018, 30, 1707627.

224

Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.

225

Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

226

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13-23.

227

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

228

Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307-7313.

229

Chen, J.; Wang, Q. Y.; Sheng, Y. C.; Cao, G. Q.; Yang, P.; Shan, Y. B.; Liao, F. Y.; Muhammad, Z.; Bao, W. Z.; Hu, L. G. et al. High- performance WSe2 photodetector based on a laser-induced p-n junction. ACS Appl. Mater. Interfaces 2019, 11, 43330-43336.

230

Tu, L. Q.; Cao, R. R.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wang, F.; Wang, Z.; Shen, H.; Lin, T.; Zhou, P. et al. Ultrasensitive negative capacitance phototransistors. Nat. Commun. 2020, 11, 101.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2020
Revised: 01 April 2021
Accepted: 06 April 2021
Published: 24 July 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 61922005 and U1930105), the Beijing Municipal Natural Science Foundation (No. JQ20027), and the Fundamental Research Funds for the Central Universities (No. 048000546320504).

Return