Journal Home > Volume 15 , Issue 1

Electrocatalytic oxygen reduction reaction (ORR) provides an attractive alternative to anthraquinone process for H2O2 synthesis. Rational design of earth-abundant electrocatalysts for H2O2 synthesis via a two-electron ORR process in acids is attractive but still very challenging. In this work, we report that nitrogen-doped carbon nanotubes as a multi-functional support for CoSe2 nanoparticles not only keep CoSe2 nanoparticles well dispersed but alter the crystal structure, which in turn improves the overall catalytic behaviors and thereby renders high O2-to-H2O2 conversion efficiency. In 0.1 M HClO4, such CoSe2@NCNTs hybrid delivers a high H2O2 selectivity of 93.2% and a large H2O2 yield rate of 172 ppm·h−1 with excellent durability up to 24 h. Moreover, CoSe2@NCNTs performs effectively for organic dye degradation via electro-Fenton process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media

Show Author's information Longcheng Zhang1,2,§Jie Liang2,§Luchao Yue1,2Zhaoquan Xu2Kai Dong2Qian Liu2Yonglan Luo2Tingshuai Li2Xiaohong Cheng3( )Guanwei Cui4Bo Tang4Abdulmohsen Ali Alshehri5Khalid Ahmed Alzahrani5Xiaodong Guo1( )Xuping Sun2( )
School of Chemical Engineering Sichuan UniversityChengdu 610065 China
Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of ChinaChengdu 610054 China
Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices Hubei University of Arts and ScienceXiangyang 441053 China
College of Chemistry, Chemical Engineering and Materials Science Shandong Normal UniversityJinan 250014 China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research King Abdulaziz University, P.O. Box 80203Jeddah 21589 Saudi Arabia

§ Longcheng Zhang and Jie Liang contributed equally to this work.

Abstract

Electrocatalytic oxygen reduction reaction (ORR) provides an attractive alternative to anthraquinone process for H2O2 synthesis. Rational design of earth-abundant electrocatalysts for H2O2 synthesis via a two-electron ORR process in acids is attractive but still very challenging. In this work, we report that nitrogen-doped carbon nanotubes as a multi-functional support for CoSe2 nanoparticles not only keep CoSe2 nanoparticles well dispersed but alter the crystal structure, which in turn improves the overall catalytic behaviors and thereby renders high O2-to-H2O2 conversion efficiency. In 0.1 M HClO4, such CoSe2@NCNTs hybrid delivers a high H2O2 selectivity of 93.2% and a large H2O2 yield rate of 172 ppm·h−1 with excellent durability up to 24 h. Moreover, CoSe2@NCNTs performs effectively for organic dye degradation via electro-Fenton process.

Keywords: electrocatalysis, hydrogen peroxide, cobalt selenide, nitrogen-doped carbon nanotube, two-electron oxygen reduction reaction

References(74)

1

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. , Int. Ed. 2006, 45, 6962‒6984.

2

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064‒4081.

3

Yamada, Y.; Yoneda, M.; Fukuzumi, S. High and robust performance of H2O2 fuel cells in the presence of scandium ion. Energy Environ. Sci. 2015, 8, 1698‒1701.

4

Mahmood, A.; Eqan, M.; Pervez, S.; Alghamdi, H. A.; Tabinda, A. B.; Yasar, A.; Brindhadevi, K.; Pugazhendhi, A. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci. Total Environ. 2020, 742, 140561.

5

Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front. Chem. Sci. Eng. 2018, 12, 124‒131.

6

Santacesaria, E.; Di Serio, M.; Velotti, R.; Leone, U. Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Ind. Eng. Chem. Res. 1994, 33, 277‒284.

7

Kosydar, R.; Drelinkiewicz, A.; Ganhy, J. P. Degradation reactions in anthraquinone process of hydrogen peroxide synthesis. Catal. Lett. 2010, 139, 105‒113.

8

Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614‒2622.

9

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442‒458.

10

Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 13, 2691‒2696.

11

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogenous to heterogenous electrocatalysis. Adv. Energy Mater. 2020, 2003323.

12

Dong, K.; Lei, Y.; Zhao, H. T.; Liang, J.; Ding, P.; Liu, Q.; Xu, Z. Q.; Lu, S. Y.; Li, Q.; Sun, X. P. Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 2020, 8, 23123‒23141.

13

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156‒162.

14

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436‒442.

15

Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651‒1657.

16

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282‒290.

17
Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. , Int. Ed. in press, DOI: 10.1002/anie.202101880.https://doi.org/10.1002/anie.202101880
DOI
18

Zhang, Q. Z.; Zhou, M. H.; Ren, G. B.; Li, Y. W.; Li, Y. C.; Du, X. D. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 2020, 11, 1731.

19

Wang, M. J.; Zhang, N.; Feng, Y. G.; Hu, Z. W.; Shao, Q.; Huang, X. Q. Partially pyrolyzed binary metal-organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem. , Int. Ed. 2020, 59, 14373‒14377.

20

Li, L. Q.; Tang, C.; Zheng, Y.; Xia, B. Q.; Zhou, X. L.; Xu, H. L.; Qiao, S. Z. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 2020, 10, 2000789.

21

Wang, Z.; Li, Q. K.; Zhang, C. H.; Cheng, Z. H.; Chen, W. Y.; McHugh, E. A.; Carter, R. A.; Yakobson, B. I.; Tour, J. M. Hydrogen peroxide generation with 100% Faradaic efficiency on metal-free carbon black. ACS Catal. 2021, 11, 2454‒2459.

22

Xu, Z. Q.; Zhao, H. T.; Liang, J.; Wang, Y.; Li, T. S.; Luo, Y. S.; Shi, X. F.; Lu, S. Y.; Feng, Z. S.; Wu, Q. et al. Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Mater. Today Phys. 2020, 15, 100280.

23

Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519‒1526.

24

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

25

Ntainjua, N. E.; Piccinini, M.; Pritchard, J. C.; Edwards, J. K.; Carley, A. F.; Moulijn, J. A.; Hutchings, G. J. Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold- palladium catalysts. ChemSusChem 2009, 2, 575‒580.

26

Qiang, Z. M.; Chang, J. H.; Huang, C. P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002, 36, 85‒94.

27

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432‒19441.

28

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137‒ 1143.

29

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High- concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

30

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

31

Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

32

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

33

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433‒8442.

34

Zhao, X.; Wang, Y.; Da, Y. L.; Wang, X. X.; Wang, T. T.; Xu, M. Q.; He, X. Y.; Zhou, W.; Li, Y. F.; Coleman, J. N. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360‒1366.

35

Sheng, H. Y.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J. Z.; Song, B.; Schmidt, J. R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189‒4203.

36

Liang, J.; Wang, Y. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Zhao, H. T.; Lu, S. Y.; Zhang, F.; Asiri, A. M.; Liu, F. G. et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 2021, 9, 6117‒6122.

37

Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250‒1349.

38

Chen, Y. M.; Li, X. Y.; Park, K.; Zhou, L. M.; Huang, H. T.; Mai, Y. W.; Goodenough, J. B. Hollow nanotubes of N-doped carbon on CoS. Angew. Chem. , Int. Ed. 2016, 55, 15831‒15834.

39

Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020‒1024.

40

Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well- defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606‒11613.

41

Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897‒ 4900.

42

Xiao, H. Q.; Wang, S. T.; Wang, C.; Li, Y. Y.; Zhang, H. R.; Wang, Z. J.; Zhou, Y.; An, C. H.; Zhang, J. Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochim. Acta 2016, 217, 156‒162.

43

Liu, T. T.; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98‒102.

44

Liu, T. T.; Asiri, A. M.; Sun, X. P. Electrodeposited Co-doped NiSe2 nanoparticles film: A good electrocatalyst for efficient water splitting. Nanoscale 2016, 8, 3911‒3915.

45

Li, J.; Liu, G. Y.; Liu, B. B.; Min, Z. Y.; Qian, D.; Jiang, J. B.; Li, J. H. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2018, 265, 577‒585.

46

Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. , Int. Ed. 2014, 53, 6710‒6714.

47

Ren, X. P.; Wei, Q. B.; Wu, F.; Wang, Y. H.; Zhao, L. J. CNT/VS2-MoS2 with multi-interface structure for improved hydrogen evolution reaction. Chem. Commun. 2021, 57, 2531‒2534.

48

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433‒3467.

49

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E.; Rossmeisl, J. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

50

Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

51

Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 2014, 118, 30063–30070.

52

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Please change it to: Angew. Chem. Int. Ed. 2016, 55, 2058–2062.

53

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

54

Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; Chen, C.; Wang, D.; Li, Y. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

55

Jirkovsky, J. S.; Halasa, M.; Schiffrin, D. J. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys. Chem. Chem. Phys. 2010, 12, 8042–8052.

56

Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

57

Zhao, K.; Su, Y.; Quan, X.; Liu, Y.; Chen, S.; Yu, H. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126.

58

Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; Fornasiero, P. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.

59

Hasché, F.; Oezaslan, M.; Strasser, P.; Fellinger, T. P. Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 2016, 25, 251–257.

60

Fellinger, T. P.; Hasche, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

61

Wang, A.; Bonakdarpour, A.; Wilkinson, D. P.; Gyenge, E. Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide. Electrochim. Acta 2012, 66, 222–229.

62

Silva, F. L.; Reis, R. M.; Barros, W. R. P.; Rocha, R. S.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in gas diffusion electrodes: Application of iron (Ⅱ) phthalocyanine as a modifier of carbon black. J. Electroanal. Chem. 2014, 722, 32–37.

63

Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

64

Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D. L.; Qiu, Y.; Geyer, S. M. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928.

65

Sun, Y.; Li, S.; Jovanov, Z. P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Kuhl, S.; Strasser, P. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production. ChemSusChem 2018, 11, 3388–3395.

66

Bonakdarpour, A.; Esau, D.; Cheng, H.; Wang, A.; Gyenge, E.; Wilkinson, D. P. Preparation and electrochemical studies of metal-carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim. Acta 2011, 56, 9074–9081.

67

Byeon, A.; Cho, J.; Kim, J. M.; Chae, K. H.; Park, H. Y.; Hong, S. W.; Ham, H. C.; Lee, S. W.; Yoon, K. R.; Kim, J. Y. High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horiz. 2020, 5, 832–838.

68

Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

69

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S.; Cho, S. P.; Yoo, J. S.; Sung, Y. E.; Hyeon, T. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

70

Zhang, Q.; Tan, X.; Bedford, N. M.; Han, Z.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

71

Sheng, H.; Hermes, E. D.; Yang, X.; Ying, D.; Janes, A. N.; Li, W.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

72

Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189–4203.

73

Zhao, X.; Wang, Y.; Da, Y.; Wang, X.; Wang, T.; Xu, M.; He, X.; Zhou, W.; Li, Y.; Coleman, J. N.; Li, Y. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360–1366.

74

Gao, R.; Pan, L.; Li, Z.; Shi, C.; Yao, Y.; Zhang, X.; Zou, J. Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 2020, 30, 1910539.

File
12274_2021_3474_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 February 2021
Revised: 24 March 2021
Accepted: 25 March 2021
Published: 26 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22072015, 21878195 and U20A20145), the Scientific and technological achievement transformation project of Sichuan Science and Technology Department (No. 21ZHSF0111), and Shanghai Scientific and Technological Innovation Project (No. 18JC1410604).

Return