Journal Home > Volume 14 , Issue 12

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymersome formation by solvent annealing-induced structural reengineering under 3D soft confinement

Show Author's information Xi Mao1Hao Li1Jinwoo Kim2Shuai Deng1Renhua Deng1( )Bumjoon J. Kim2Jintao Zhu1( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST) State Key Laboratory of Materials Processing and Die & Mold Technology School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan 430074 China
Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141 Republic of Korea

Abstract

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

Keywords: self-assembly, polymersome, block copolymer, three-dimensional (3D) confinement, solvent annealing

References(50)

1

Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562–5568.

2

Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710–3721.

3

Messager, L.; Burns, J. R.; Kim, J.; Cecchin, D.; Hindley, J.; Pyne, A. L. B.; Gaitzsch, J.; Battaglia, G.; Howorka, S. Biomimetic hybrid nanocontainers with selective permeability. Angew. Chem. , Int. Ed. 2016, 55, 11106–11109.

4

Gaitzsch, J.; Huang, X.; Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 2016, 116, 1053– 1093.

5

Liu, Y. J.; Yang, X. Y.; Huang, Z. Q.; Huang, P.; Zhang, Y.; Deng, L.; Wang, Z. T.; Zhou, Z. J.; Liu, Y.; Kalish, H. et al. Magneto-plasmonic Janus vesicles for magnetic field-enhanced photoacoustic and magnetic resonance imaging of tumors. Angew. Chem. , Int. Ed. 2016, 55, 15297–15300.

6

Mabire, A. B.; Robin, M. P.; Willcock, H.; Pitto-Barry, A.; Kirby, N.; O'Reilly, R. K. Dual effect of thiol addition on fluorescent polymeric micelles: On-to-OFF emissive switch and morphology transition. Chem. Commun. 2014, 50, 11492–11495.

7

Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 2010, 132, 9268–9270.

8

Deng, R. H.; Wang, Y. L.; Yang, L. S.; Bain, C. D. In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl. Mater. Interfaces 2019, 11, 40652–40661.

9

Allen, S. D.; Liu, Y. G.; Bobbala, S.; Cai, L.; Hecker, P. I.; Temel, R.; Scott, E. A. Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration. Nano Res. 2018, 11, 5689–5703.

10

Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070–2078.

11

Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

12

Ma, L.; Eisenberg, A. Relationship between wall thickness and size in block copolymer vesicles. Langmuir 2009, 25, 13730–13736.

13

Li, D.; Huo, M.; Liu, L.; Zeng, M.; Chen, X.; Wang, X. S.; Yuan, J. Y. Overcoming kinetic trapping for morphology evolution during polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1900202.

14

Hu, Y.; Chen, Y. M.; Du, J. Z. Evolution of diverse higher-order membrane structures of block copolymer vesicles. Polym. Chem. 2019, 10, 3020–3029.

15

Liu, D. Q.; Cornel, E. J.; Du, J. Z. Renoprotective angiographic polymersomes. Adv. Funct. Mater. 2020, 31, 2007330.

16

Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 7492–7497.

17

Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. A vesicle-to-worm transition provides a new high-temperature oil thickening mechanism. Angew. Chem. , Int. Ed. 2017, 56, 1746–1750.

18

Ratcliffe, L. P. D.; Derry, M. J.; Ianiro, A.; Tuinier, R.; Armes, S. P. A single thermoresponsive diblock copolymer can form spheres, worms or vesicles in aqueous solution. Angew. Chem. , Int. Ed. 2019, 131, 19140–19146.

19

Huo, M.; Xu, Z. Y.; Zeng, M.; Chen, P. Y.; Liu, L.; Yan, L. T.; Wei, Y.; Yuan, J. Y. Controlling vesicular size via topological engineering of amphiphilic polymer in polymerization-induced self-assembly. Macromolecules 2017, 50, 9750–9759.

20

Luo, L. B.; Eisenberg, A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains. Angew. Chem. , Int. Ed. 2002, 41, 1001–1004.

DOI
21

Deng, R. H.; Liang, F. X.; Qu, X. Z.; Wang, Q.; Zhu, J. T.; Yang, Z. Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750–755.

22

Deng, R. H.; Liu, S. Q.; Li, J. Y.; Liao, Y. G.; Tao, J.; Zhu, J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893.

23
Deng, R. H.; Xu, J. P.; Yi, G. R.; Kim, J. W.; Zhu, J. T. Responsive colloidal polymer particles with ordered mesostructures. Adv. Funct. Mater. in press, DOI: 10.1002/adfm.202008169.https://doi.org/10.1002/adfm.202008169
DOI
24

Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H. Self- assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.

25

Yan, N.; Zhu, Y. T.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183–13195.

26

Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.

27

Lee, J.; Ku, K. H.; Kim, J.; Lee, Y. J.; Jang, S. G.; Kim, B. J. Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc. 2019, 141, 15348–15355.

28

Chi, P.; Wang, Z.; Li, B. H.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683– 11689.

29

Lv, F.; An, Z. S.; Wu, P. Y. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.

30

Lv, F.; An, Z. S.; Wu, P. Y. Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly. CCS Chem. 2020, 2, 2211–2222.

31

Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M. Phase transition and phase transformation in block copolymer nanoparticles. Macromol. Rapid Commun. 2010, 31, 1773–1778.

32

Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Frustrated phases of block copolymers in nanoparticles. Angew. Chem. , Int. Ed. 2008, 47, 8044–8046.

33

Varadharajan, D.; Turgut, H.; Lahann, J.; Yabu, H.; Delaittre, G. Surface-reactive patchy nanoparticles and nanodiscs prepared by tandem nanoprecipitation and internal phase separation. Adv. Funct. Mater. 2018, 28, 1800846.

34

Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th anniversary of macromolecular science viewpoint: Block copolymer particles: Tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306–317.

35

Shi, A. C.; Li, B. H. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398–1413.

36

Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233.

37

Yan, N.; Zhu, Y. T.; Jiang, W. Self-assembly of AB diblock copolymer confined in a soft nano-droplet: A combination study by Monte Carlo simulation and experiment. J. Phys. Chem. B 2016, 120, 12023– 12029.

38

Lee, J.; Ku, K. H.; Park, C. H.; Lee, Y. J.; Yun, H.; Kim, B. J. Shape and color switchable block copolymer particles by temperature and pH dual responses. ACS Nano 2019, 13, 4230–4237.

39

Li, Y. L.; Chen, X.; Geng, H. K.; Dong, Y.; Wang, B.; Ma, Z.; Pan, L.; Ma, G. Q.; Song, D. P.; Li, Y. S. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures. Angew. Chem. , Int. Ed. 2021, 133, 3691–3697.

40

Li, L.; Matsunaga, K.; Zhu, J. T.; Higuchi, T.; Yabu, H.; Shimomura, M.; Jinnai, H.; Hayward, R. C.; Russell, T. P. Solvent-driven evolution of block copolymer morphology under 3D confinement. Macromolecules 2010, 43, 7807–7812.

41

Shin, J. M.; Lee, Y. J.; Kim, M.; Ku, K. H.; Lee, J.; Kim, Y.; Yun, H.; Liao, K.; Hawker, C. J.; Kim, B. J. Development of shape-tuned, monodisperse block copolymer particles through solvent-mediated particle restructuring. Chem. Mater. 2019, 31, 1066–1074.

42

Fan, H. L.; Jin, Z. X. Selective swelling of block copolymer nanoparticles: Size, nanostructure, and composition. Macromolecules 2014, 47, 2674–2681.

43

Mei, S. L.; Jin, Z. X. Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 2013, 9, 322–329.

44

Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.

45

Deng, R. H.; Liang, F. X.; Li, W. K.; Yang, Z. Z.; Zhu, J. T. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012–7017.

46

Deng, R. H.; Li, H.; Liang, F. X.; Zhu, J. T.; Li, B. H.; Xie, X. L.; Yang, Z. Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 2015, 48, 5855–5860.

47

Lovett, J. R.; Warren, N. J.; Ratcliffe, L. P. D.; Kocik, M. K.; Armes, S. P. pH-responsive non-ionic diblock copolymers: Ionization of carboxylic acid end-groups induces an order-order morphological transition. Angew. Chem. , Int. Ed. 2015, 54, 1279–1283.

48

Weisbord, I.; Shomrat, N.; Moshe, H.; Sosnik, A.; Segal-Peretz, T. Nano spray-dried block copolymer nanoparticles and their transformation into hybrid and inorganic nanoparticles. Adv. Funct. Mater. 2020, 30, 1808932.

49

Xu, M.; Ku, K. H.; Lee, Y. J.; Shin, J. J.; Kim, E. J.; Jang, S. G.; Yun, H.; Kim, B. J. Entropy-driven assembly of nanoparticles within emulsion-evaporative block copolymer particles: Crusted, seeded, and alternate-layered onions. Chem. Mater. 2020, 32, 7036–7043.

50

Yan, N.; Liu, H. X.; Zhu, Y. T.; Jiang, W.; Dong, Z. Y. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980–5987.

File
12274_2021_3396_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2021
Revised: 01 February 2021
Accepted: 09 February 2021
Published: 13 March 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52003094), and the Fundamental Research Funds for the Central Universities (No. 2020kfyXJJS011). We also acknowledge HUST Analytical and Testing Center for providing characterization services.

Return