Journal Home > Volume 14 , Issue 11

Vanadium dioxide (VO2) has emerged as a promising micro-actuator material for its large amplitude and high work density across the transition between the insulating (M1 and M2) and metallic (R) phase. Even though M2–R transition offers about 70% higher transformation stress than M1–R structural phase transition, the application of the M2 phase in the micro-actuators is hindered by the fact that previously, M2 phase can only stay stable under tensile stress. In this work, we propose and verify that by synthesizing the VO2 nanowires under optimized oxygen-rich conditions, stoichiometry change can be introduced into the nanowires (NWs) which in turn yield a large number free-standing single-crystalline M2-phase NWs stable at room temperature. In addition, we demonstrate that the output stress of the M2-phase NWs is about 65% higher than that of the M1-phase NWs during their transition to R phase, quite close to the theoretical prediction. Our findings open new avenues towards enhancing the performance of VO2-based actuators by using M2–R transition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Achieving room-temperature M2-phase VO2 nanowires for superior thermal actuation

Show Author's information Yong-Qiang Zhang1,§Kai Chen1,§Hao Shen1Yue-Cun Wang1Mohamed Nejib Hedhili2Xixiang Zhang2Ju Li3( )Zhi-Wei Shan1( )
Center for Advancing Materials Performance from the Nanoscale State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong UniversityXi'an 710049 China
Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST)Thuwal 23955-6900 Saudi Arabia
Departments of Nuclear Science and Engineering and Materials Science and Engineering Massachusetts Institute of TechnologyCambridge MA 02139 USA

§Yong-Qiang Zhang and Kai Chen contributed equally to this work.

Abstract

Vanadium dioxide (VO2) has emerged as a promising micro-actuator material for its large amplitude and high work density across the transition between the insulating (M1 and M2) and metallic (R) phase. Even though M2–R transition offers about 70% higher transformation stress than M1–R structural phase transition, the application of the M2 phase in the micro-actuators is hindered by the fact that previously, M2 phase can only stay stable under tensile stress. In this work, we propose and verify that by synthesizing the VO2 nanowires under optimized oxygen-rich conditions, stoichiometry change can be introduced into the nanowires (NWs) which in turn yield a large number free-standing single-crystalline M2-phase NWs stable at room temperature. In addition, we demonstrate that the output stress of the M2-phase NWs is about 65% higher than that of the M1-phase NWs during their transition to R phase, quite close to the theoretical prediction. Our findings open new avenues towards enhancing the performance of VO2-based actuators by using M2–R transition.

Keywords: metal-insulator transition, single crystalline vanadium dioxide (VO2) nanowires, room-temperature M2 phase, micro-actuator, martensitic transformation, transformation strain

References(50)

1

Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38.

2

Vaia, R.; Baur, J. Adaptive composites. Science 2008, 319, 420–421.

3

Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481–494.

4

Liu, K.; Cheng, C.; Cheng, Z. T.; Wang, K.; Ramesh, R.; Wu, J. Q. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett. 2012, 12, 6302– 6308.

5

Guo, H.; Chen, K.; Oh, Y.; Wang, K.; Dejoie, C.; Syed Asif, S. A.; Warren, O. L.; Shan, Z. W.; Wu, J.; Minor, A. M. Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Lett. 2011, 11, 3207–3213.

6

Sepúlveda, N.; Rúa, A.; Cabrera, R.; Fernández, F. Young's modulus of VO2 thin films as a function of temperature including insulator- to-metal transition regime. Appl. Phys. Lett. 2008, 92, 191913.

7

Fan, W.; Huang, S.; Cao, J.; Ertekin, E.; Barrett, C.; Khanal, D. R.; Grossman, J. C.; Wu, J. Superelastic metal-insulator phase transition in single-crystal VO2 nanobeams. Phys. Rev. B 2009, 80, 241105(R).

8

Cao, J.; Gu, Y.; Fan, W.; Chen, L. Q.; Ogletree, D. F.; Chen, K.; Tamura, N.; Kunz, M.; Barrett, C.; Seidel, J. et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram. Nano Lett. 2010, 10, 2667–2673.

9

Park, J. H.; Coy, J. M.; Kasirga, T. S.; Huang, C. M.; Fei, Z. Y.; Hunter, S.; Cobden, D. H. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature 2013, 500, 431–434.

10

Rúa, A.; Fernández, F. E.; Hines, M. A.; Sepúlveda, N. Study of the resonant frequencies of silicon microcantilevers coated with vanadium dioxide films during the insulator-to-metal transition. J. Appl. Phys. 2010, 107, 053528.

11

Rúa, A.; Cabrera, R.; Coy, H.; Merced, E.; Sepúlveda, N.; Fernández, F. E. Phase transition behavior in microcantilevers coated with M1-phase VO2 and M2-phase VO2: Cr thin films. J. Appl. Phys. 2012, 111, 104502.

12

Liu, K.; Cheng, C.; Suh, J.; Tang-Kong, R.; Fu, D. Y.; Lee, S.; Zhou, J.; Chua, L. O.; Wu, J. Q. Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater. 2014, 26, 1746–1750.

13

Tian, Z.; Xu, B. R.; Hsu, B.; Stan, L.; Yang, Z.; Mei, Y. F. Reconfigurable vanadium dioxide nanomembranes and microtubes with controllable phase transition temperatures. Nano Lett. 2018, 18, 3017–3023.

14

Cao, J. B.; Fan, W.; Zhou, Q.; Sheu, E.; Liu, A. W.; Barrett, C.; Wu, J. Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers. J. Appl. Phys. 2010, 108, 083538.

15

Wang, K.; Cheng, C.; Cardona, E.; Guan, J. Y.; Liu, K.; Wu, J. Q. Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano 2013, 7, 2266–2272.

16

Shi, R.; Cai, X. B.; Wang, W. J.; Wang, J. W.; Kong, D. J.; Cai, N. D.; Chen, P. C.; He, P. G.; Wu, Z. F.; Amini, A. et al. Single-crystalline vanadium dioxide actuators. Adv. Funct. Mater. 2019, 29, 1900527.

17

Pouget, J. P.; Launois, H.; D'Haenens, J. P.; Merenda, P.; Rice, T. M. Electron localization induced by uniaxial stress in pure VO2. Phys. Rev. Lett. 1975, 35, 873–875.

18

Brückner, W.; Gerlach, U.; Thuss, B. Phase diagram of V1–xAlxO2. Phys. Stat. Sol. (a) 1977, 40, K131–K134.

19

Strelcov, E.; Tselev, A.; Ivanov, I.; Budai, J. D.; Zhang, J.; Tischler, J. Z.; Kravchenko, I.; Kalinin, S. V.; Kolmakov, A. Doping-based stabilization of the M2 phase in free-standing VO2 nanostructures at room temperature. Nano Lett. 2012, 12, 6198–6205.

20

Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh, J.; Liu, K.; Wu, J. Q. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. J. Am. Chem. Soc. 2013, 135, 4850–4855.

21

Pouget, J. P.; Launois, H.; Rice, T. M.; Dernier, P.; Gossard, A.; Villeneuve, G.; Hagenmuller, P. Dimerization of a linear heisenberg chain in the insulating phases of V1−xCrxO2. Phys. Rev. B 1974, 10, 1801–1815.

22

Wang, Y. P.; Sun, X.; Chen, Z. Z.; Cai, Z. H.; Zhou, H.; Lu, T. M.; Shi, J. Defect-engineered epitaxial VOδ in strain engineering of heterogeneous soft crystals. Sci. Adv. 2018, 4, eaar3679.

23

Strelcov, E.; Davydov, A. V.; Lanke, U.; Watts, C.; Kolmakov, A. In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets. ACS Nano 2011, 5, 3373–3384.

24

Zhang, S. X.; Kim, I. S.; Lauhon, L. J. Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams. Nano Lett. 2011, 11, 1443–1447.

25

Zhou, X. C.; Andoy, N. M.; Liu, G. K.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237–241.

26

Winkler, J.; Neubert, M. 28 - Automation of crystal growth from melt. In Handbook of Crystal Growth; 2nd ed. Rudolph, P., Ed.; Elsevier: Boston, 2015; pp 1143–1184.

DOI
27

Guiton, B. S.; Gu, Q.; Prieto, A. L.; Gudiksen, M. S.; Park, H. Single-crystalline vanadium dioxide nanowires with rectangular cross sections. J. Am. Chem. Soc. 2005, 127, 498–499.

28

McWhan, D. B.; Marezio, M.; Remeika, J. P.; Dernier, P. D. X-ray diffraction study of metallic VO2. Phys. Rev. B 1974, 10, 490–495.

29

Jones, A. C.; Berweger, S.; Wei, J.; Cobden, D.; Raschke, M. B. Nano- optical investigations of the metal-insulator phase behavior of individual VO2 microcrystals. Nano Lett. 2010, 10, 1574–1581.

30

Atkin, J. M.; Berweger, S.; Chavez, E. K.; Raschke, M. B.; Cao, J. B.; Fan, W.; Wu, J. Q. Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition. Phys. Rev. B 2012, 85, 020101(R).

31

Basu, R.; Srihari, V.; Sardar, M.; Srivastava, S. K.; Bera, S.; Dhara, S. Probing phase transition in VO2 with the novel observation of low-frequency collective spin excitation. Sci. Rep. 2020, 10, 1977.

32

Shvets, P.; Dikaya, O.; Maksimova, K.; Goikhman, A. A review of Raman spectroscopy of vanadium oxides. J. Raman Spectrosc. 2019, 50, 1226–1244.

33

Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p xps binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectros. Relat. Phenomena 2004, 135, 167–175.

34

Guo, H.; Wang, K.; Deng, Y.; Oh, Y.; Syed Asif, S. A.; Warren, O. L.; Shan, Z. W.; Wu, J.; Minor, A. M. Nanomechanical actuation from phase transitions in individual VO2 micro-beams. Appl. Phys. Lett. 2013, 102, 231909.

35

Wang, X. G.; Chen, K.; Zhang, Y. Q.; Wan, J. C.; Warren, O. L.; Oh, J.; Li, J.; Ma, E.; Shan, Z. W. Growth conditions control the elastic and electrical properties of ZnO nanowires. Nano Lett. 2015, 15, 7886–7892.

36

Cheng, C.; Liu, K.; Xiang, B.; Suh, J.; Wu, J. Q. Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation. Appl. Phys. Lett. 2012, 100, 103111.

37

Yang, Z.; Ko, C.; Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367.

38

Kim, M. H.; Lee, B.; Lee, S.; Larson, C.; Baik, J. M.; Yavuz, C. T.; Seifert, S.; Vajda, S.; Winans, R. E.; Moskovits, M. et al. Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 2009, 9, 4138–4146.

39

Cui, Y. Y.; Liu, B.; Chen, L. L.; Luo, H. J.; Gao, Y. F. Formation energies of intrinsic point defects in monoclinic VO2 studied by first-principles calculations. AIP Adv. 2016, 6, 105301.

40

Kortunova, E. V.; Nikolaeva, N. G.; Chvanski, P. P.; Maltsev, V. V.; Volkova, E. A.; Koporulina, E. V.; Leonyuk, N. I.; Kuech, T. F. Hydrothermal synthesis of improved ZnO crystals for epitaxial growth of gan thin films. J. Mater. Sci. 2008, 43, 2336–2341.

41

Martin, J. J.; Armington, A. F. Effect of growth rate on quartz defects. J. Cryst. Growth 1983, 62, 203–206.

42

Tanahashi, K.; Kikuchi, M.; Higashino, T.; Inoue, N.; Mizokawa, Y. Concentration of point defects changed by thermal stress in growing CZ silicon crystal: Effect of the growth rate. J. Cryst. Growth 2000, 210, 45–48.

43

Hurle, D. T. J.; Rudolph, P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Cryst. Growth 2004, 264, 550–564.

44

Rúa, A.; Fernández, F. E.; Sepúlveda, N. Bending in VO2-coated microcantilevers suitable for thermally activated actuators. J. Appl. Phys. 2010, 107, 074506.

45

Merced, E.; Tan, X. B.; Sepúlveda, N. Strain energy density of VO2-based microactuators. Sens. Actuator. A: Phys. 2013, 196, 30–37.

46

Huang, C. Z.; Zhang, Z.; Ramanathan, S.; Weinstein, D. VO2 phase- transition-based vertical MEMS microactuators. IEEE Trans. Electron Dev. 2019, 66, 4380–4386.

47

Yoon, J.; Lee, G.; Park, C.; Mun, B. S.; Ju, H. Investigation of length- dependent characteristics of the voltage-induced metal insulator transition in VO2 film devices. Appl. Phys. Lett. 2014, 105, 083503.

48

Hormoz, S.; Ramanathan, S. Limits on vanadium oxide mott metal– insulator transition field-effect transistors. Solid-State Electron. 2010, 54, 654–659.

49

Simon Mun, B.; Yoon, J.; Mo, S. K.; Chen, K.; Tamura, N.; Dejoie, C.; Kunz, M.; Liu, Z.; Park, C.; Moon, K. et al. Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal. Appl. Phys. Lett. 2013, 103, 061902.

50

Zimmers, A.; Aigouy, L.; Mortier, M.; Sharoni, A.; Wang, S. M.; West, K. G.; Ramirez, J. G.; Schuller, I. K. Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett. 2013, 110, 056601.

Video
12274_2021_3355_MOESM2_ESM.mp4
File
12274_2021_3355_MOESM1_ESM.pdf (4 MB)
12274_2021_3355_MOESM3_ESM.cif (2 KB)
12274_2021_3355_MOESM4_ESM.cif (2.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2020
Revised: 21 December 2020
Accepted: 21 January 2021
Published: 24 March 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52031011, 91860109, 51927801, and 51621063), the National Key Research and Development Program of China (Nos. 2017YFB0702001 and 2016YFB0700404), 111 Project 2.0 of China (No. BP2018008), and funding from the Science and Technology Departments of Shaanxi and Xi'an, China (Nos. 2016KTZDGY-04-03, 2016KTZDGY-04-04, and 201805064ZD15CG48). The authors appreciate the helpful discussions and suggestions from Prof. Evan Ma from John Hopkins University (JHU). Y. Q. Z. acknowledges King Abdullah University of Science & Technology (KAUST) to support his six-months research and study at KAUST as an exchange student. We also appreciate the support from the International Joint Laboratory for Micro/ Nano Manufacturing and Measurement Technologies, and the Collaborative Innovation Center of High-End Manufacturing Equipment at Xi'an Jiaotong University, China. J. L. acknowledges support by National Science Foundation (No. CMMI-1922206). Authors declare no competing interests.

Return