Journal Home > Volume 14 , Issue 12

Carbon-based material has been regarded as one of the most promising electrode materials for potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile "in situ self-template bubbling" method for synthesizing interlayer-tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the high reversible capacity (360.6 mAh·g−1@0.05 A·g−1), excellent rate capability (158.6 mAh·g−1@10.0 A·g−1) and ultralong high-rate cycling stability (82.8% capacity retention after 2, 000 cycles at 5.0 A·g−1). Theoretical simulation reveals the correlations between interlayer distance and K-ion diffusion kinetics. Experimentally, deliberately designed consecutive cyclic voltammetry (CV) measurements, ex situ Raman tests, galvanostatic intermittent titration technique (GITT) method decipher the origin of the excellent rate performance by disentangling the synergistic effect of interlayer and pore-structure engineering. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work may deepen the fundamental understandings of carbon-based PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors, and dual-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering

Show Author's information Deping Li1( )Qing Sun2Yamin Zhang2Xinyue Dai2Fengjun Ji1Kaikai Li1Qunhui Yuan1Xingjun Liu1Lijie Ci1,2( )
State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (shenzhen)Shenzhen518055China
Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinan250061China

Abstract

Carbon-based material has been regarded as one of the most promising electrode materials for potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile "in situ self-template bubbling" method for synthesizing interlayer-tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the high reversible capacity (360.6 mAh·g−1@0.05 A·g−1), excellent rate capability (158.6 mAh·g−1@10.0 A·g−1) and ultralong high-rate cycling stability (82.8% capacity retention after 2, 000 cycles at 5.0 A·g−1). Theoretical simulation reveals the correlations between interlayer distance and K-ion diffusion kinetics. Experimentally, deliberately designed consecutive cyclic voltammetry (CV) measurements, ex situ Raman tests, galvanostatic intermittent titration technique (GITT) method decipher the origin of the excellent rate performance by disentangling the synergistic effect of interlayer and pore-structure engineering. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work may deepen the fundamental understandings of carbon-based PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors, and dual-ion batteries.

Keywords: potassium-ion batteries, synergistic interlayer and pore-structure engineering, theoretical calculations, carbonaceous electrode, ex situ Raman technique

References(76)

1

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279-289.

2

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

3

Li, G. Z.; Huang, B.; Pan, Z. F.; Su, X. Y.; Shao, Z. P.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030-2053.

4

Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

5

Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334-4352.

6

Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

7

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358-6466.

8

Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 2016, 164, A54-A60.

9

Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340-361.

10

Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

11

Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475-9478.

12

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.

13

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.

14

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

15

Li, D. P.; Zhu, M.; Chen, L.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G. M.; Sun, Q.; Liu, Y.; Liang, Z. et al. Sandwich-like FeCl3@C as high- performance anode materials for potassium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800606.

16

Li, L.; Liu, L. J.; Hu, Z.; Lu, Y.; Liu, Q. N.; Jin, S.; Zhang, Q.; Zhao, S.; Chou, S. L. Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 12917-12924.

17

Liu, Z. M.; Wang, J.; Jia, X. X.; Li, W. L.; Zhang, Q. F.; Fan, L.; Ding, H. B.; Yang, H. G.; Yu, X. Z.; Li, X. K. et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 2019, 13, 10631-10642.

18

Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605-1612.

19

Li, D. J.; Cheng, X. L.; Xu, R.; Wu, Y.; Zhou, X. F.; Ma, C.; Yu, Y. Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 19929-19938.

20

Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen- doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.

21

Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J G. .; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601-610.

22

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

23

Zhang, W. L.; Yin, J.; Sun, M. L.; Wang, W. X.; Chen, C. L.; Altunkaya, M.; Emwas, A. H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H. N. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 2020, 32, 2000732.

24

Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Huang, H. J.; Xu, R.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen- doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

25

Zhang, E. J.; Jia, X. X.; Wang, B.; Wang, J.; Yu, X. Z.; Lu, B. G. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 2020, 7, 2000470.

26

Feng, Y. H.; Chen, S. H.; Wang, J.; Lu, B. G. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 2020, 43, 129-138.

27

Hu, J. X.; Xie, Y. Y.; Yin, M.; Zhang, Z. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. J. Energy Chem. 2020, 49, 327-334.

28

Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. L.; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 2020, 27, 212-225.

29

Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long- cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

30

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

31

Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615-623.

32

Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351-1358.

33

Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193-6198.

34

Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687-4691.

35

Li, D. P.; Sun, Q.; Zhang, Y. M.; Chen, L.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. ChemSusChem 2019, 12, 2689-2700.

36

Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.

37

Li, D. P.; Dai, L. N.; Ren, X. H.; Ji, F. J.; Sun, Q.; Zhang, Y. M.; Ci, L. J. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. , in press, DOI: 10.1039/D0EE02919J.

38

Sun, Q.; Li, D. P.; Dai, L. N.; Liang, Z.; Ci, L. J. Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes. Small 2020, 16, 2005023.

39

Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367-374.

40

Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534-1547.

41

Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.

42

Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.

43

Boebinger, M. G.; Yeh, D.; Xu, M.; Miles, B. C.; Wang, B. L.; Papakyriakou, M.; Lewis, J. A.; Kondekar, N. P.; Cortes, F. J. Q.; Hwang, S. et al. Avoiding fracture in a conversion battery material through reaction with larger ions. Joule 2018, 2, 1783-1799.

44

Liu, Y.; Sun, Z. H.; Sun, X.; Lin, Y.; Tan, K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem., Int. Ed. 2020, 59, 2473-2482.

45

Li, L.; Zhang, W. C.; Wang, X.; Zhang, S. L.; Liu, Y. J.; Li, M. H.; Zhu, G. J.; Zheng, Y.; Zhang, Q.; Zhou, T. F. et al. Hollow-carbon- templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939-7948.

46

Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802-809.

47

Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation- dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997-3002.

48

Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.

49

Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

50

Zhang, R. D.; Huang, J. J.; Deng, W. Z.; Bao, J. Z.; Pan, Y. L.; Huang, S. P.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16474-16479.

51

Fedotov, S. S.; Samarin, A. S.; Nikitina, V. A.; Aksyonov, D. A.; Sokolov, S. A.; Zhugayevych, A.; Stevenson, K. J.; Khasanova, N. R.; Abakumov, A. M.; Antipov, E. V. Reversible facile Rb+ and K+ ions de/insertion in a KTiPO4-type RbVPO4F cathode material. J. Mater. Chem. A 2018, 6, 14420-14430.

52

An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66-72.

53

Ma, G. Y.; Huang, K. S.; Ma, J. S.; Ju, Z. C.; Xing, Z.; Zhuang, Q. C. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 2017, 5, 7854-7861.

54

Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738-9744.

55

Chen, M.; Wang, Y.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

56

Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 mxene and n-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246-257.

57

Olsson, E.; Cottom, J.; Au, H.; Guo, Z. Y.; Jensen, A. C. S.; Alptekin, H.; Drew, A. J.; Titirici, M. M.; Cai, Q. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 2020, 30, 1908209.

58

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731-1742.

59

Li, Z. F.; Bommier, C.; Chong, Z. S.; Jian, Z. L.; Surta, T. W.; Wang, X. F.; Xing, Z. Y.; Neuefeind, J. C.; Stickle, W. F.; Dolgos, M. et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 2017, 7, 1602894.

60

Rebelo, S. L. H.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araújo, J. P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784-12796.

61

Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005-3039.

62

Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578-45585.

63

Zeng, S. F.; Zhou, X. F.; Wang, B.; Feng, Y. Z.; Xu, R.; Zhang, H. B.; Peng, S. M.; Yu, Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 2019, 7, 15774-15781.

64

Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

65

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783-3787.

66

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electro-chemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.

67

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.

68

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454-460.

69

Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569-1578.

70

Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842- A1846.

71

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

72

Gómez-Santos, G. Thermal van der Waals interaction between graphene layers. Phys. Rev. B 2009, 80, 245424.

73

Valencia, F.; Romero, A. H.; Ancilotto, F.; Silvestrelli, P. L. Lithium adsorption on graphite from density functional theory calculations. J. Phys. Chem. B 2006, 110, 14832-14841.

74

Badger, R. M. A relation between internuclear distances and bond force constants. J. Chem. Phys. 1934, 2, 128-131.

75

Cioslowski, J.; Liu, G. H.; Mosquera Castro, R. A. Badger's rule revisited. Chem. Phys. Lett. 2000, 331, 497-501.

76

Herschbach, D. R.; Laurie, V. W. Anharmonic potential constants and their dependence upon bond length. J. Chem. Phys. 1961, 35, 458-464.

File
12274_2021_3324_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 November 2020
Revised: 23 December 2020
Accepted: 10 January 2021
Published: 06 February 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by School Research Startup Expenses of Harbin Institute of Technology (Shenzhen) (No. DD29100027), the National Natural Science Foundation of China (No. 52002094), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110756), China Postdoctoral Science Foundation (No. 2019M661276), High-level Talents' Discipline Construction Fund of Shandong University (No. 31370089963078).

Return