AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application

Yongsong Tan1,2Kun Yang1Bo Wang1Hui Li2Lei Wang2( )Chaoxia Wang1( )
Key Laboratory of Eco-Textile, Ministry of Education College of Textile Science and Engineering, Jiangnan University1800 Lihu Road,Wuxi 214122 China
Institute of Biomedical & Health Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen 518055 China
Show Author Information

Graphical Abstract

Abstract

With the increasing demand for smart wearable clothing, the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention. However, the current challenge of T-PEPS lies in remaining the outstanding output performance without compromising its wearing comfort. Here, a novel structural hierarchy T-PEPS based on the single-crystalline ZnO nanorods are designed. The T-PEPS is constructed with three layers mode consisting of a polyvinylidene fluoride (PVDF) membrane, the top and bottom layers of conductive rGO polyester (PET) fabrics with self-orientation ZnO nanorods. As a result, the as-fabricated T-PEPS shows low detection limit up to 8.71 Pa, high output voltage to 11.47 V and superior mechanical stability. The sensitivity of the sensor is 0.62 V·kPa-1 in the pressure range of 0–2.25 kPa. Meanwhile, the T-PEPS is employed to detect human movements such as bending/relaxation motion of the wrist, bending/stretching motion of each finger. It is demonstrated that the T-PEPS can be up-scaled to promote the application of wearable sensor platforms and self-powered devices.

References

1

Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P. S. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 2017, 10, 3557-3570.

2

Li, M.; Jie, Y.; Shao, L. H.; Guo, Y. L.; Cao, X.; Wang, N.; Wang, Z. L. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 2019, 12, 1831-1835.

3

Ma, L. Y.; Liu, Q.; Wu, R. H.; Meng, Z. H.; Patil, A.; Yu, R.; Yang, Y.; Zhu, S. H.; Fan, X. W.; Hou, C. et al. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 2020, 16, 2000203.

4

Lou, M. N.; Abdalla, I.; Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1597-1605.

5

Dong, K.; Peng, X.; Wang, Z. L. Fiber/Fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

6

Zhu, M. M.; Lou, M. N.; Abdalla, I.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 2020, 69, 104429.

7

Guan, X. Y.; Xu, B. G.; Gong, J. L. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020, 70, 104516.

8

Gullapalli, H.; Vemuru, V. S. M.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P. M. Flexible piezoelectric ZnO-Paper nanocomposite strain sensor. Small 2010, 6, 1641-1646.

9

Chen, X. L.; Li, X. M.; Shao, J. Y.; An, N. L.; Tian, H. M; Wang, C.; Han, T. Y.; Wang, L.; Lu, B. H. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245.

10

Alluri, N. R.; Saravanakumar, B.; Kim, S. J. Flexible, hybrid piezoelectric film (BaTi(1-x)ZrxO3)/PVDF nanogenerator as a self- powered fluid velocity sensor. ACS Appl. Mater. Interfaces 2015, 7, 9831-9840.

11

Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152-160.

12

Zhu, R. J.; Wang, Z. M.; Ma, H.; Yuan, G. L.; Wang, F. X.; Cheng, Z. X.; Kimura, H. Poling-free energy harvesters based on robust self-poled ferroelectric fibers. Nano Energy 2018, 50, 97-105.

13

Sun, H.; Xie, S. L.; Li, Y. M.; Jiang, Y. S.; Sun, X. M.; Wang, B. J.; Peng, H. S. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv. Mater. 2016, 28, 8431-8438.

14

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855-4862.

15

Li, M. Y.; Deng, T. T.; Liu, S. X.; Zhang, F. X.; Zhang, G. X. Superhydrophilic surface modification of fabric via coating with nano-TiO2 by UV and alkaline treatment. Appl. Surf. Sci. 2014, 297, 147-152.

16

Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement. Appl. Surf. Sci. 2015, 359, 196-203.

17

Wang, C.; Guo, R. H.; Lan, J. W.; Tan, L.; Jiang, S. X.; Xiang, C. Preparation of multi-functional fabric via silver/reduced graphene oxide coating with poly (diallyldimethylammonium chloride) modification. J. Mater. Sci. Mater. Electron. 2018, 29, 8010-8019.

18

Li, X. L.; Liu, R.; Xu, C. Y.; Bai, Y.; Zhou, X. M.; Wang, Y. J.; Yuan, G. H. High-performance polypyrrole/Graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage. Adv. Funct. Mater. 2018, 28, 1800064.

19

Van Ngoc, H.; Kang, D. J. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale 2016, 8, 5059-5066.

20

Shin, S. H.; Kim, Y. H.; Lee, M. H.; Jung, J. Y.; Nah, J. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 2014, 8, 2766-2773.

21

Park, K. I.; Son, J. H.; Hwang, G. T.; Jeong, C. K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S. H.; Byun, M.; Wang, Z. L. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514-2520.

22

Li, P.; Zhai, J. W.; Shen, B.; Zhang, S. J.; Li, X. L.; Zhu, F. Y.; Zhang, X. M. Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv. Mater. 2018, 30, 1705171.

23

Ayyaru, S.; Dinh, T. T. L.; Ahn, Y. H. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. Chemosphere 2020, 241, 125068.

24

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809-813.

25

Ahmad, M.; Zhu, J. ZnO based advanced functional nanostructures: Synthesis, properties and applications. J. Mater. Chem. 2011, 21, 599-614.

26

Athauda, T. J.; Ozer, R. R. Nylon fibers as template for the controlled growth of highly oriented single crystalline ZnO nanowires. Cryst. Growth Des. 2013, 13, 2680-2686.

27

Bhavanasi, V.; Kumar, V.; Parida, K.; Wang, J. X.; Lee, P. S. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 2016, 8, 521-529.

28

Whiter, R. A.; Narayan, V.; Kar-Narayan, S. A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater. 2014, 4, 1400519.

29

Zhao, T. T.; Jiang, W. T.; Liu, B.; Liu, P.; Jia, R.; Niu, D.; Liu, H. Z.; Dang, Y. H.; Chen, B. D.; Shi, Y. S. et al. Flexible multichannel-stimulator for motor neuroprosthesis in vivo by remotely driven in vitro. Nano Energy 2016, 30, 146-154.

30

Kim, M.; Wu, Y. S.; Kan, E. C. Fan, J. T. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers 2018, 10, 745.

31

Chun, S.; Kim, Y.; Jin, H.; Choi, E.; Lee, S. B.; Park, W. A graphene force sensor with pressure-amplifying structure. Carbon 2014, 78, 601-608.

32

Liu, X. X.; Chao, D. L.; Su, D. P.; Liu, S. K.; Chen, L.; Chi, C. X.; Lin, J. Y.; Shen, Z. X.; Zhao, J. P.; Mai, L. Q. et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 2017, 37, 108-117.

33

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.

34

Babaahmadi, V.; Montazer, M. A new route to synthesis silver nanoparticles on polyamide fabric using stannous chloride. J. Text. Inst. 2015, 106, 970-977.

35

Babaahmadi, V.; Montazer, M. Reduced graphene oxide/SnO2 nanocomposite on PET surface: Synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surf. A Physicochem. Eng. Aspects 2016, 506, 507-513.

36

Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y. S.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086-3090.

37

Saravanakumar, B.; Mohan, R.; Thiyagarajan, K.; Kim, S. J. Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 2013, 3, 16646-16656.

38

Lin, H. I.; Wuu, D. S.; Shen, K. C.; Horng, R. H. Fabrication of an ultra-flexible ZnO nanogenerator for harvesting energy from respiration. ECS J. Solid State Sci. Technol. 2013, 2, P400.

39

Liu, C. H.; Yu, A. F.; Peng, M. Z.; Song, M.; Liu, W.; Zhang, Y.; Zhai, J. Y. Improvement in the piezoelectric performance of a ZnO nanogenerator by a combination of chemical doping and interfacial modification. J. Phys. Chem. C 2016, 120, 6971-6977.

40

Filippin, A. N.; Sanchez-Valencia, J. R.; Garcia-Casas, X.; Lopez- Flores, V.; Macias-Montero, M.; Frutos, F.; Barranco, A.; Borras, A. 3D core-multishell piezoelectric nanogenerators. Nano Energy 2019, 58, 476-483.

41

Cai, X. M.; Lei, T. P.; Sun, D. H.; Lin, L. W. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382-15389.

42

Mahale, B.; Bodas, D.; Gangal, S. A. Study of β-phase development in spin-coated PVDF thick films. Bull. Mater. Sci. 2017, 40, 569-575.

43

Liu, F.; Hashim, N. A.; Liu, Y. T.; Abed, M. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Memb. Sci. 2011, 375, 1-27.

44

Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress Polym. Sci. 2014, 39, 683-706.

45

Ince-Gunduz, B. S.; Alpern, R.; Amare, D.; Crawford, J.; Dolan, B.; Jones, S.; Kobylarz, R.; Reveley, M.; Cebe, P. Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer 2010, 51, 1485-1493.

46

Dal Corso, A.; Posternak, M.; Resta, R.; Baldereschi, A. Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B, 1994, 50, 10715-10721.

47

Jean-Mistral, C.; Basrour, S.; Chaillout, J. J. Comparison of electroactive polymers for energy scavenging applications. Smart Mater. Struct. 2010, 19, 085012.

48

Zhang, Z.; Chen, Y.; Guo, J. S. ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 105, 212-218.

49

Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009, 21, 2185-2189.

50

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105.

51

Lin, Z. M.; Yang, J.; Li, X. S.; Wu, Y. F.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 2018, 28, 1704112.

52

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

53

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267-10274.

54

Cao, R.; Pu, X. J.; Du, X. Y.; Yang, W.; Wang, J. N.; Guo, H. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, C.; Li, C. J. et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 2018, 12, 5190-5196.

Nano Research
Pages 3969-3976
Cite this article:
Tan Y, Yang K, Wang B, et al. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Research, 2021, 14(11): 3969-3976. https://doi.org/10.1007/s12274-021-3322-2
Topics:

1016

Views

98

Crossref

93

Web of Science

100

Scopus

4

CSCD

Altmetrics

Received: 10 October 2020
Revised: 10 January 2021
Accepted: 11 January 2021
Published: 05 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return