Journal Home > Volume 14 , Issue 8

Fiber-shaped dye-sensitized solar cells (FDSSCs) represent promising futuristic flexible or wearable power sources, owing to their simple fabrication process, light weight, weavability, and wearability. Along with strategies on changing the properties of semiconductor materials, the effects of incorporating silver-embedded SiO2 nanoparticles (Ag@SiO2 NPs) on the photoanodes of solid-state FDSSCs (SS-FDSSCs) are investigated. The power conversion efficiency (PCE) of SS-FDSSCs with Ag@SiO2 NPs reaches 5.38%, which is comparable to the reference (3.98%). The PCEs remain at 95% between -16.9 and 91.7 °C, indicating the operational stability of SS-FDSSCs within this temperature range. The fabricated SS-FDSSCs, whose radii were 2 mm, maintains more than 90% of their efficiency over 500 bending cycles and 10 washing cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient and stable solid-state fiber dye-sensitized solar cells with Ag-decorated SiO2 nanoparticles

Show Author's information Jae Ho Kim1,§Seok-Ju Yoo1,§Daseul Lee1Jin Woo Choi1Sang-Cheol Han2Tae In Ryu3Hyung Woo Lee4( )Myunghun Shin5( )Myungkwan Song1( )
Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Sungsan-gu, Changwon, Gyeongsangnam-do, 51508, Republic of Korea
CEN Nano. Co. Ltd., Nano Convergence Center, Muan-ro, Buduk-myeon, Miryang-si, Gyeongsangnam-do, 50404, Republic of Korea
Accident Coordination and Training Division, National Institute of Chemical Safety (NICS), 90, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
Department of Nanoenergy Engineering and Research Center of Energy Convergence Technology, Pusan National University, Busandaehak-ro 63-2, Geumjeong-gu, Busan 46241, Republic of Korea
School of Electronics and Information Engineering, Korea Aerospace University, Goyang-city, Gyeonggi-do, 10540, Republic of Korea

§ Jae Ho Kim and Seok-Ju Yoo contributed equally to this work.

Abstract

Fiber-shaped dye-sensitized solar cells (FDSSCs) represent promising futuristic flexible or wearable power sources, owing to their simple fabrication process, light weight, weavability, and wearability. Along with strategies on changing the properties of semiconductor materials, the effects of incorporating silver-embedded SiO2 nanoparticles (Ag@SiO2 NPs) on the photoanodes of solid-state FDSSCs (SS-FDSSCs) are investigated. The power conversion efficiency (PCE) of SS-FDSSCs with Ag@SiO2 NPs reaches 5.38%, which is comparable to the reference (3.98%). The PCEs remain at 95% between -16.9 and 91.7 °C, indicating the operational stability of SS-FDSSCs within this temperature range. The fabricated SS-FDSSCs, whose radii were 2 mm, maintains more than 90% of their efficiency over 500 bending cycles and 10 washing cycles.

Keywords: dye-sensitized solar cells, fiber-shaped solar cells, SiO2 nanoparticles, plasmonic effect, solid-state electrolyte

References(38)

[1]
Stuckelberger, M.; Biron, R.; Wyrsch, N.; Haug, F. J.; Ballif, C. Review: Progress in solar cells from hydrogenated amorphous silicon. Renew. Sustain. Energy Rev. 2017, 76, 1497-1523.
[2]
Wirth-Lima, A. J.; Alves-Sousa, P. P.; Bezerra-Fraga, W. Graphene/silicon and 2D-MoS2/silicon solar cells: A review. Appl. Phys. A 2019, 125, 241.
[3]
Manivannan, R.; Victoria, S. N. Preparation of chalcogenide thin films using electrodeposition method for solar cell applications—A review. Sol. Energy 2018, 173, 1144-1157.
[4]
Ghosh, A.; Selvaraj, P.; Sundaram, S.; Mallick, T. K. The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol. Energy 2018, 163, 537-544.
[5]
Yuan, H. W.; Zhao, Y. Y.; Wang, Y. D.; Duan, J. L.; He, B. L.; Tang, Q. W. Sonochemistry-assisted black/red phosphorus hybrid quantum dots for dye-sensitized solar cells. J. Power Sources 2019, 410-411, 53-58.
[6]
O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
[7]
Yang, Z. B.; Deng, J.; Sun, X. M.; Li, H. P.; Peng, H. S. Stretchable, wearable dye-sensitized solar cells. Adv. Mater. 2014, 26, 2643-2647.
[8]
Fang, X.; Yang, Z. B.; Qiu, L. B.; Sun, H.; Pan, S. W.; Deng, J.; Luo, Y. F.; Peng, H. S. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 2014, 26, 1694-1698.
[9]
Wang, L.; Fu, X. M.; He, J. Q.; Shi, X.; Chen, T. Q.; Chen, P. N.; Wang, B. J.; Peng, H. S. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.
[10]
Gao, Z.; Liu, P.; Fu, X. M.; Xu, L. M.; Zuo, Y.; Zhang, B.; Sun, X. M.; Peng, H. S. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. J. Mater. Chem. A 2019, 7, 14447-14454.
[11]
Hatamvand, M.; Kamrani, E.; Lira-Cantú, M.; Madsen, M.; Patil, B. R.; Vivo, P.; Mehmood, M. S.; Numan, A.; Ahmed, I.; Zhan, Y. Q. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 2020, 71, 104609.
[12]
Zhang, J. X.; Wang, Z. P.; Li, X. L.; Yang, J.; Song, C. H.; Li, Y. P.; Cheng, J. L.; Guan, Q.; Wang, B. Flexible platinum-free fiber-shaped dye sensitized solar cell with 10.28% efficiency. ACS Appl. Energy Mater. 2019, 2, 2870-2877.
[13]
Sun, H.; You, X.; Deng, J.; Chen, X. L.; Yang, Z. B.; Chen, P. N.; Fang, X.; Peng, H. S. A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew. Chem., Int. Ed. 2014, 53, 6664-6668.
[14]
Zhang, N. N.; Chen, J.; Huang, Y.; Guo, W. W.; Yang, J.; Du, J.; Fan, X.; Tao, C. Y. A wearable all-solid photovoltaic textile. Adv. Mater. 2016, 28, 263-269.
[15]
Mohamad, A. A. Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review. J. Power Sources 2016, 329, 57-71.
[16]
Zhao, J.; Shen, X. J.; Yan, F.; Qiu, L. H.; Lee, S.; Sun, B. Q. Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 7326-7330.
[17]
Sun, H.; Li, H. P.; You, X.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 345-349.
[18]
Gao, X. Y.; You, X. Y.; Zhao, X.; Li, W. F.; Liu, X. Y.; Ye, M. D. Flexible fiber-shaped liquid/quasi-solid-state quantum dot-sensitized solar cells based on different metal sulfide counter electrodes. Appl. Phys. Lett. 2018, 113, 043901.
[19]
Liang, J.; Zhang, G. M.; Sun, W. T.; Dong, P. High efficiency flexible fiber-type dye-sensitized solar cells with multi-working electrodes. Nano Energy 2015, 12, 501-509.
[20]
Dragonetti, C.; MAgni, M.; Colombo, A.; Melchiorre, F.; Biagini, P.; Roberto, D. Coupling of a copper dye with a copper electrolyte: a fascinating springboard for sustainable dye-sensitized solar cells. ACS Appl. Energy Mater. 2018, 1, 751-756.
[21]
Alkuam, E.; Badradeen, E.; Guisbiers, G. Influence of CdS morphology on the efficiency of dye-sensitized solar cells. ACS Omega 2018, 3, 13433-13441.
[22]
Yu, Q. J.; Wang, Y. H.; Yi, Z. H.; Zu, N. N.; Zhang, J.; Zhang, M.; Wang, P. High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 2010, 4, 6032-6038.
[23]
Huang, Y. W.; Wu, H. G.; Yu, Q. J.; Wang, J. N.; Yu, C. L.; Wang, J. Z.; Gao, S. Y.; Jiao, S. J.; Zhang, X. T.; Wang, P. Single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells. ACS Sustainable Chem. Eng. 2018, 6, 3411-3418.
[24]
Mehmood, U.; Ahmed, S.; Hussein, I. A.; Harrabi, K. Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode. Photonics Nanostruct. Fundam. Appl. 2015, 16, 34-42.
[25]
Maheswari, D.; Sreenivasan, D. Review of TiO2 nanowires in dye sensitized solar cell. Appl. Sol. Energy 2015, 51, 112-116.
[26]
Xiao, L.; Xu, J.; Liu, X.; Zhang, Y. Z.; Zhang, B.; Yao, J. X.; Dai, S. Y.; Tan, Z.; Pan, X. Mesoporous TiO2 nanowire film for dye-sensitized solar cell. J. Nanosci. Nanotechnol. 2016, 16, 5605-5610.
[27]
Lee, Y. Y.; El-Shall, H. Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells. Appl. Surf. Sci. 2017, 426, 1263-1270.
[28]
Bao, Z. Y.; Fu, N. Q.; Qin, Y. Q.; Lv, J.; Wang, Y.; He, J. J.; Hou, Y. D.; Jiao, C. Y.; Chen, D. C.; Wu, Y. C. et al. Broadband plasmonic enhancement of high-efficiency dye-sensitized solar cells by incorporating Au@Ag@SiO2 core-shell nanocuboids. ACS Appl. Mater. Interfaces 2020, 12, 538-545.
[29]
Ghadari, R.; Sabri, A.; Saei, P. S. Kong, F. T. Marques, H. M. Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells. Sol. Energy 2020, 198, 283-294.
[30]
Yang, H. Y.; Lee, S. H.; Kim, H. M.; Pham, X. H.; Hahm, E.; Kang, E. J.; Kim, T. H.; Ha, Y.; Jun, B. H.; Rho, W. Y. Plasmonic and charging effects in dye-sensitized solar cells with Au nanoparticles incorporated into the channels of freestanding TiO2 nanotube arrays by an electrodeposition method. J. Ind. Eng. Chem. 2019, 80, 311-317.
[31]
Hu, H.; Yan, K.; Peng, M.; Yu, X.; Chen, S.; Chen, B. X.; Dong, B.; Gao, X.; Zou, D. C. Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 2016, 4, 3901-3906.
[32]
Gupta, A. K.; Srivastava, P.; Bahadur, L. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell. Appl. Phys. A 2016, 122, 724.
[33]
Liu, Q. S.; Wei, Y. W.; Shahid, M. Z.; Yao, M. M.; Xu, B.; Liu, G. N.; Jiang, K. J.; Li, C. C. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance. J. Power Sources 2018, 380, 142-148.
[34]
Kim, H.; Jo, J.; Lee, G.; Shin, M.; Lee, J. C. Optical modeling of dye-sensitized solar cells for color analysis. J. Nanosci. Nanotechnol. 2017, 17, 8425-8431.
[35]
Topič, M.; Čampa, A.; Filipič, M.; Berginc, M.; Krašovec, U. O.; Smole, F. Optical and electrical modelling and characterization of dye-sensitized solar cells. Curr. Appl. Phys. 2010, 10, S425-S430.
[36]
Shin, M.; Lee, S. H.; Lim, J. W.; Yun, S. J. Scattering matrix analysis for evaluating the photocurrent in hydrogenated-amorphous-silicon-based thin film solar cells. J. Nanosci. Nanotechnol. 2014, 14, 8309-8314.
[37]
Ghymn, Y. H.; Jung, K.; Shin, M.; Ko, H. A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices. Nanoscale 2015, 7, 18642-18650.
[38]
Lin, G. C.; Wang, M. X.; Wang, H.; Ardhi, R. E. A.; Yu, H.; Zou, D. C.; Lee, J. K. Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy 2018, 49, 95-102.
File
12274_2020_3278_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2020
Revised: 30 November 2020
Accepted: 02 December 2020
Published: 02 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Jae Ho Kim, Seok-Ju Yoo contributed equally to this work. This research was supported by the Fundamental Research Program (PNK 6670) of the Korea Institute of Materials Science (KIMS) and by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (No. NRF-2019M3D1A1067389). We would like to thank Editage (www.Editage.co.kr) for English language editing.

Return