Journal Home > Volume 14 , Issue 7

A high-quality hybrid Cs0.15FA0.85PbI3 thin film is deposited through doping of carbon nanodots (CNDs) into perovskite precursor solution. The corresponding inverted planar perovskite solar cells (PSCs) of ITO/PTAA/Cs0.15FA0.85PbI3/PC61BM/BCP/Ag exhibit an improvement in efficiency from 17.36% to 20.06%, which could be attributed to the passivation of the defects at the crystallized perovskite thin film and enhanced perovskite phase uniformity. The results of electron trap density indicate that the addition of CNDs significantly reduces the defects density at the perovskite thin film and the recombination of charge carriers in transport process is minimized. These results demonstrate that low-cost CNDs are effective additives for passivating defects, further reducing charge carrier recombination and improving device efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells

Show Author's information Yu Gao1,2Wenzhan Xu1,2( )Fang He1,2Pengbo Nie1,2Qingdan Yang3Zhichun Si2Hong Meng4Guodan Wei1,2( )
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518000, China
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510080, China
Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China

Abstract

A high-quality hybrid Cs0.15FA0.85PbI3 thin film is deposited through doping of carbon nanodots (CNDs) into perovskite precursor solution. The corresponding inverted planar perovskite solar cells (PSCs) of ITO/PTAA/Cs0.15FA0.85PbI3/PC61BM/BCP/Ag exhibit an improvement in efficiency from 17.36% to 20.06%, which could be attributed to the passivation of the defects at the crystallized perovskite thin film and enhanced perovskite phase uniformity. The results of electron trap density indicate that the addition of CNDs significantly reduces the defects density at the perovskite thin film and the recombination of charge carriers in transport process is minimized. These results demonstrate that low-cost CNDs are effective additives for passivating defects, further reducing charge carrier recombination and improving device efficiency.

Keywords: carbon nanodots, passivation, perovskite solar cells, power conversion efficiency

References(53)

[1]
Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867-7918.
[2]
Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442-1446.
[3]
Gao, X. X.; Luo, W.; Zhang, Y.; Hu, R. Y.; Zhang, B.; Züttel, A.; Feng, Y. Q.; Nazeeruddin, K. N. Stable and high-efficiency methylammonium- free perovskite solar cells. Adv. Mater. 2020, 32, 1905502.
[4]
Xu, W. Z.; Zheng, L. Y.; Zhang, X. T.; Cao, Y.; Meng, T. Y.; Wu, D. Z.; Liu, L.; Hu, W. P.; Gong, X. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 2018, 8, 1703178.
[5]
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron- hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.
[6]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[7]
NREL. Best research-cell efficiency chart[Online]. https://www.nrel.gov/pv/cell-efficiency.html. (accessed Sept 22, 2020).
[8]
Liu, T.; Luo, Z. H.; Chen, Y. Z.; Yang, T.; Xiao, Y. Q.; Zhang, G. Y.; Ma, R. J.; Lu, X. H.; Zhan, C. L.; Zhang, M. J. et al. A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy Environ. Sci. 2019, 12, 2529-2536.
[9]
Chen, W.; Pang, G. T.; Zhou, Y. C.; Sun, Y. Z.; Liu, F. Z.; Chen, R.; Chen, S. M.; Djurišić, A. B.; He, Z. B. Stabilizing N-type hetero- junctions for NiOx based inverted planar perovskite solar cells with an efficiency of 21.6%. J. Mater. Chem. A 2020, 8, 1865-1874.
[10]
Wang, K.; Liu, X. Y.; Huang, R.; Wu, C. C.; Yang, D.; Hu, X. W.; Jiang, X. F.; Duchamp, J. C.; Dorn, H.; Priya, S. Nonionic Sc3N@C80 dopant for efficient and stable halide perovskite photovoltaics. ACS Energy Lett. 2019, 4, 1852-1861.
[11]
Wang, K.; Zhang, Z.; Liu, C.; Fu, Q.; Xu, W. Z.; Huang, C. W.; Weiss, R. A.; Gong, X. Efficient polymer solar cells by lithium sulfonated polystyrene as a charge transport interfacial layer. ACS Appl. Mater. Interfaces 2017, 9, 5348-5357.
[12]
Chen, H. N.; Wei, Z. H.; He, H. X.; Zheng, X. L.; Wong, K. S.; Yang, S. H. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 2016, 6, 1502087.
[13]
Bu, T. L.; Wu, L.; Liu, X. P.; Yang, X. K.; Zhou, P.; Yu, X. X.; Qin, T. S.; Shi, J. J.; Wang, S.; Li, S. S. et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.
[14]
Cao, X. B.; Zhi, L. L.; Jia, Y.; Li, Y. H.; Zhao, K.; Cui, X.; Ci, L. J.; Zhuang, D. M.; Wei, J. Q. A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 2019, 11, 7639-7654.
[15]
Chavan, R. D.; Prochowicz, D.; Tavakoli, M. M.; Yadav, P.; Hong, C. K. Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells. Adv. Mater. Interfaces 2020, 7, 2000105.
[16]
Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522-525.
[17]
Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460-4468.
[18]
Xu, W. Z.; He, F.; Zhang, M.; Nie, P. B.; Zhang, S. W.; Zhao, C.; Luo, R. P.; Li, J. Z.; Zhang, X.; Zhao, S. C. et al. Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 2019, 4, 2491-2499.
[19]
Ansari, F.; Shirzadi, E.; Salavati-Niasari, M.; LaGrange, T.; Nonomura, K.; Yum, J. H.; Sivula, K.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. et al. A passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 11428-11433.
[20]
Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.
[21]
Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778-2788
[22]
Xu, W. Z.; Gao, Y.; Ming, W. J.; He, F.; Li, J. Z.; Zhu, X. H.; Kang, F. Y.; Li, J. Y.; Wei, G. D. Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 2020, 32, 2003965.
[23]
Tong, J. H.; Song, Z. N.; Kim, D. H.; Chen, X. H.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475-479.
[24]
Liu, W.; Liu, N. J.; Ji, S. L.; Hua, H. F.; Ma, Y. H.; Hu, R. Y.; Zhang, J.; Chu, L.; Li, X. A.; Huang, W. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 119.
[25]
Li, X. M.; Wang, K. L.; Lgbari, F.; Dong, C.; Yang, W. F.; Ma, C.; Ma, H.; Wang, Z. K.; Liao, L. S. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Res. 2020, 13, 2203-2208.
[26]
Wang, L. G.; Zhou, H. P.; Hu, J. N.; Huang, B. L.; Sun, M. Z.; Dong, B. W.; Zheng, G. H. J.; Huang, Y.; Chen, Y. H.; Li, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265-270.
[27]
Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245-250.
[28]
Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z. G.; Li, Y. F.; Liu, S. Z. F. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 2018, 8, 1701757.
[29]
Chiang, C. H.; Wu, C. G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196-200.
[30]
Chen, N. L.; Yi, X. H.; Zhuang, J.; Wei, Y. Z.; Zhang, Y. Y.; Wang, F. Y.; Cao, S. K.; Li, C.; Wang, J. Z. An efficient trap passivator for perovskite solar cells: Poly(propylene glycol) bis(2-aminopropyl ether). Nano-Micro Lett. 2020, 12, 177.
[31]
Li, Z. Q.; Wang, F.; Liu, C. Y.; Gao, F.; Shen, L.; Guo, W. B. Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%. J. Mater. Chem. A 2019, 7, 22359-22365.
[32]
Zhang, H. J.; Hou, M. H.; Xia, Y. D.; Wei, Q. L.; Wang, Z.; Cheng, Y. C.; Chen, Y. H.; Huang, W. Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2018, 6, 9264-9270.
[33]
Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460-466.
[34]
Wang, K.; Zheng, L. Y.; Zhu, T.; Liu, L.; Becker, M. L.; Gong, X. High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene oxide). Nano Energy 2020, 67, 104229.
[35]
Hadadian, M.; Smått, J. H.; Correa-Baena, J. P. The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ. Sci. 2020, 13, 1377-1407.
[36]
Hui, W.; Yang, Y. G.; Xu, Q.; Gu, H.; Feng, S. L.; Su, Z. H.; Zhang, M. R.; Wang, J. O.; Li, X. D.; Fang, J. F. et al. Red-carbon-quantum- dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1906374.
[37]
Yue, G. Q.; Chen, D.; Wang, P.; Zhang, J.; Hu, Z. Y.; Zhu, Y. J. Low- temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. Electrochim. Acta 2016, 218, 84-90.
[38]
Liu, J. H.; Zhou, Q. S.; Thein, N. K.; Tian, L.; Jia, D. L.; Johansson, E. M. J.; Zhang, X. L. In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. J. Mater. Chem. A 2019, 7, 13777-13786.
[39]
Shastry, T. A.; Hersam, M. C. Carbon nanotubes in thin-film solar cells. Adv. Energy Mater. 2017, 7, 1601205.
[40]
Ferrer-Ruiz, A.; Scharl, T.; Haines, P.; Rodríguez-Pérez, L.; Cadranel, A.; Herranz, M. Á.; Guldi, D. M.; Martín, N. Exploring tetrathiafulvalene-carbon nanodot conjugates in charge transfer reactions. Angew. Chem., Int. Ed. 2018, 57, 1001-1005.
[41]
Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for PH sensing and cell imaging. Nano Res. 2019, 12, 815-821.
[42]
Gao, Y.; Wang, H. R.; Ma, Q.; Wu, A. J.; Zhang, W.; Zhang, C. X.; Chen, Z. H.; Zeng, X. X.; Wu, X. W.; Wu, Y. P. Carbon sheet- decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon 2019, 148, 9-15.
[43]
Chen, Z. H.; Gao, Y.; Zhang, C. X.; Zeng, X. X.; Wu, X. W. Surface- wrinkle-modified graphite felt with high effectiveness for vanadium redox flow batteries. Adv. Electron. Mater. 2019, 5, 1900036.
[44]
Thote, A.; Jeon, I.; Lee, J. W.; Seo, S.; Lin, H. S.; Yang, Y.; Daiguji, H.; Maruyama, S.; Matsuo, Y. Stable and reproducible 2D/3D formamidinium-lead-iodide perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2486-2493.
[45]
Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206-209.
[46]
Holzwarth, U.; Gibson, N. The scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534.
[47]
Zhao, X. M.; Yao, C.; Liu, T. R.; Hamill, J. C., Jr.; Ngongang Ndjawa, G. O.; Cheng, G. M.; Yao, N.; Meng, H.; Loo, Y. L. Extending the photovoltaic response of perovskite solar cells into the near- infrared with a narrow-bandgap organic semiconductor. Adv. Mater. 2019, 31, 1904494.
[48]
Xu, X. W.; Ma, C. Q.; Xie, Y. M.; Cheng, Y. H.; Tian, Y. M.; Li, M. L.; Ma, Y. H.; Lee, C. S.; Tsang, S. W. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2-CsI- FAI intermediate complex. J. Mater. Chem. A 2018, 6, 7731-7740.
[49]
Huang, J. H.; Xu, P.; Liu, J.; You, X. Z. Sequential introduction of cations deriving large-grain Csx FA1-x Pbi3 thin film for planar hybrid solar cells: Insight into phase-segregation and thermal-healing behavior. Small 2017, 13, 1603225.
[50]
Wang, Y. F.; Wu, J.; Zhang, P.; Liu, D. T.; Zhang, T.; Ji, L.; Gu, X. L.; David Chen, Z.; Li, S. B. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 2017, 39, 616-625.
[51]
Chan, D. S. H.; Phang, J. C. H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Trans. Electron Dev. 1987, 34, 286-293.
[52]
Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H. X.; Chen, Q.; Shi, W. Z.; Li, G. et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28, 2253-2258.
[53]
Bube, R. H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962, 33, 1733-1737.
File
12274_2020_3224_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2020
Revised: 01 November 2020
Accepted: 03 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by Shenzhen Science and Technology Innovation Committee (No. JCYJ20190809172615277) and China Postdoctoral Science Foundation (No. 2019TQ0163). This project was financially also supported by Shenzhen Municipal Development and Reform Commission, New Energy Technology Engineering Laboratory (No. SDRC [2016]172).

Return