[1]
B. Ma,; Z. C. Yang,; Y. T. Chen,; Z. H. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[2]
T. T. Wang,; M. Wang,; H. Yang,; M. Q. Xu,; C. D. Zuo,; K. Feng,; M. Xie,; J. Deng,; J. Zhong,; W. Zhou, et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522-3529.
[3]
C. Xie,; D. F. Yan,; W. Chen,; Y. Q. Zou,; R. Chen,; S. Q. Zang,; Y. Y. Wang,; X. D. Yao,; S. Y. Wang, Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47-68.
[4]
K. A. Sun,; L. Zhao,; L. Y. Zeng,; S. J. Liu,; H. Y. Zhu,; Y. P. Li,; Z. Chen,; Z. W. Zhuang,; Z. L. Li,; Z. Liu, et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068-3074.
[5]
J. Ge,; W. Zhang,; J. Tu,; T. Xia,; S. P. Chen,; G. Xie, Suppressed Jahn-Teller distortion in MnCo2O4@Ni2P heterostructures to promote the overall water splitting. Small, 2020, 16, 2001856.
[6]
C. C. Li,; Y. W. Liu,; Z. W. Zhuo,; H. X. Ju,; D. A. Li,; Y. P. Guo,; X. J. Wu,; H. Q. Li,; T. Y. Zhai, Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.
[7]
X. X. Wang,; J. M. Wang,; X. P. Sun,; S. Wei,; L. Cui,; W. R. Yang,; J. Q. Liu, Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018, 11, 988-996.
[8]
H. Zhang,; H. Y. Li,; B. Akram,; X. Wang, Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[9]
X. Chia,; M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909-921.
[10]
L. Wang,; S. Q. Zhu,; N. Marinkovic,; S. Kattel,; M. H. Shao,; B. L. Yang,; J. G. Chen, Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte. Appl. Catal. B Environ. 2018, 232, 365-370.
[11]
X. Xiao,; L. L. Zou,; H. Pang,; Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301-331.
[12]
W. K. Tang,; X. F. Liu,; Y. Li,; Y. H. Pu,; Y. Lu,; Z. M. Song,; Q. Wang,; R. H. Yu,; J. Shui, Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.
[13]
J. M. Wang,; R. M. Kong,; A. M. Asiri,; X. P. Sun, Replacing oxygen evolution with hydrazine oxidation at the anode for energy-saving electrolytic hydrogen production. ChemElectroChem 2017, 4, 481-484.
[14]
C. Wei,; S. N. Sun,; D. Mandler,; X. Wang,; S. Z. Qiao,; Z. J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 2019, 48, 2518-2534.
[15]
D. W. Yang,; Y. Gu,; X. Yu,; Z. X. Lin,; H. G. Xue,; L. G. Feng, Nanostructured Ni2P-C as an efficient catalyst for urea electrooxidation. ChemElectroChem 2018, 5, 659-664.
[16]
L. Yan,; Y. L. Sun,; E. L. Hu,; J. Q. Ning,; Y. J. Zhong,; Z. Y. Zhang,; Y. Hu, Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. J. Colloid Interface Sci. 2019, 541, 279-286.
[17]
B. J. Zhu,; Z. B. Liang,; R. Q. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.
[18]
D. N. Liu,; T. T. Liu,; L. X. Zhang,; F. L. Qu,; G. Du,; A. M. Asiri,; X. P. Sun, High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208-3213.
[19]
C. Tang,; R. Zhang,; W. B. Lu,; Z. Wang,; D. N. Liu,; S. Hao,; G. Du,; A. M. Asiri,; X. P. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842-846.
[20]
X. Liu,; K. Ni,; B. Wen,; R. T. Guo,; C. J. Niu,; J. S. Meng,; Q. Li,; P. J. Wu,; Y. W. Zhu,; X. J. Wu, et al. Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 2019, 4, 2585-2592.
[21]
Y. Tong,; P. Z. Chen,; M. X. Zhang,; T. P. Zhou,; L. D. Zhang,; W. S. Chu,; C. Z. Wu,; Y. Xie, Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018, 8, 1-7.
[22]
Z. Y. Yu,; Y. Duan,; M. R. Gao,; C. C. Lang,; Y. R. Zheng,; S. H. Yu, A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968-973.
[23]
A. G. Meguerdichian,; T. Jafari,; M. R. Shakil,; R. Miao,; L. A. Achola,; J. MacHaria,; A. Shirazi-Amin,; S. L. Suib, Synthesis and electrocatalytic activity of ammonium nickel phosphate, [NH4]NiPO4·6H2O, and β-nickel pyrophosphate, β-Ni2P2O7: Catalysts for electrocatalytic decomposition of urea. Inorg. Chem. 2018, 57, 1815-1823.
[24]
C. Y. Peng,; L. Kang,; S. Cao,; Y. Chen,; Z. S. Lin,; W. F. Fu, Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 54, 15725-15729.
[25]
Z. Z. Luo,; Y. Zhang,; C. H. Zhang,; H. T. Tan,; Z. Li,; A. Abutaha,; X. L. Wu,; Q. H. Xiong,; K. A. Khor,; K. Hippalgaonkar, et al. Multifunctional 0D-2D Ni2P nanocrystals-black phosphorus heterostructure. Adv. Energy Mater. 2017, 7, 1601285.
[26]
J. Wen,; Z. Feng,; H. R. Liu,; T. Chen,; Y. Q. Yang,; S. Z. Li,; S. Sheng,; G. J. Fang, In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery. Appl. Surf. Sci. 2019, 485, 462-467.
[27]
C. H. An,; Y. J. Wang,; Y. P. Wang,; G. Liu,; L. Li,; F. Y. Qiu,; Y. N. Xu,; L. F. Jiao,; H. T. Yuan, Facile synthesis and superior supercapacitor performances of Ni2P/RGO nanoparticles. RSC Adv. 2013, 3, 4628-4633.
[28]
P. Jiang,; Q. Liu,; X. P. Sun, NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440-13445.
[29]
S. Hao,; L. B. Yang,; D. N. Liu,; R. M. Kong,; G. Du,; A. M. Asiri,; Y. C. Yang,; X. P. Sun, Integrating natural biomass electro-oxidation and hydrogen evolution: Using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chem. Commun. 2017, 53, 5710-5713.
[30]
J. M. Wang,; X. Ma,; T. T. Liu,; D. N. Liu,; S. Hao,; G. Du,; R. M. Kong,; A. M. Asiri,; X. P. Sun, NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Mater. Today Energy 2017, 3, 9-14.
[31]
F. Yang,; J. Y. Ye,; Q. Yuan,; X. T. Yang,; Z. X. Xie,; F. L. Zhao,; Z. Y. Zhou,; L. Gu,; X. Wang, Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.
[32]
B. Ni,; Q. H. Zhang,; C. Ouyang,; S. M. Zhang,; B. Yu,; J. Zhuang,; L. Gu,; X. Wang, The synthesis of sub-nano-thick Pd nanobelt-based materials for enhanced hydrogen evolution reaction activity. CCS Chem. 2020, 2, 642-654.
[33]
D. D. Zhu,; C. X. Guo,; J. L. Liu,; L. Wang,; Y. Du,; S. Z. Qiao, Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906-10909.
[34]
Y. Xu,; X. J. Chai,; T. L. Ren,; S. S. Yu,; H. J. Yu,; Z. Q. Wang,; X. N. Li,; L. Wang,; H. J. Wang, Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chem. Commun. 2020, 56, 2151-2154.
[35]
R. Lan,; S. W. Tao,; J. T. S. Irvine, A direct urea fuel cell—Power from fertiliser and waste. Energy Environ. Sci. 2010, 3, 438-441.
[36]
R. Ding,; L. Qi,; M. J. Jia,; H. Y. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 2014, 6, 1369-1376.
[37]
S. Chen,; J. J. Duan,; A. Vasileff,; S. Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem., Int. Ed. 2016, 55, 3804-3808.
[38]
Y. H. Liang,; Q. Liu,; A. M. Asiri,; X. P. Sun, Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2015, 153, 456-460.
[39]
F. Guo,; K. Ye,; M. M. Du,; X. M. Huang,; K. Cheng,; G. L. Wang,; D. X. Cao, Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim. Acta 2016, 210, 474-482.
[40]
L. N. Sha,; K. Ye,; G. Wang,; J. Q. Shao,; K. Zhu,; K. Cheng,; J. Yan,; G. L. Wang,; D. X. Cao, Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. J. Power Sources 2019, 412, 265-271.
[41]
M. Zeng,; J. H. Wu,; Z. Y. Li,; H. H. Wu,; J. L. Wang,; H. L. Wang,; L. He,; X. J. Yang, Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustainable Chem. Eng. 2019, 7, 4777-4783.
[42]
Y. F. Sun,; S. Gao,; F. C. Lei,; Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623-636.
[43]
D. D. Li,; H. Q. Xu,; L. Jiao,; H. L. Jiang, Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019, 1, 100005.
[44]
Q. D. Liu,; X. Wang, Polyoxometalate clusters: Sub-nanometer building blocks for construction of advanced materials. Matter 2020, 2, 816-841.
[45]
M. Liu,; R. Zhang,; L. X. Zhang,; D. N. Liu,; S. Hao,; G. Du,; A. M. Asiri,; R. M. Kong,; X. P. Sun, Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front. 2017, 4, 420-423.
[46]
Y. N. Xie,; Z. Y. Zhang,; D. L. Zhong,; L. M. Peng, Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 2019, 12, 1810-1816.
[47]
S. M. Zhang,; W. X. Shi,; S. J. Rong,; S. Z. Li,; J. Zhuang,; X. Wang, Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 2020, 142, 1375-1381.
[48]
Q. Li,; N. Li,; J. An,; H. Pang, Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorg. Chem. Front. 2020, 7, 2089-2096.
[49]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[50]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[51]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[52]
R. B. Wexler,; J. M. P. Martirez,; A. M. Rappe, Active role of phosphorus in the hydrogen evolving activity of nickel phosphide (0001) surfaces. ACS Catal. 2017, 7, 7718-7725.
[53]
Y. Yuan,; X. Q. Dong,; L. Ricardez-Sandoval, A density functional theory analysis on syngas adsorption on NiO (100) surface. Appl. Surf. Sci. 2019, 498, 143782.
[54]
S. L. Dudarev,; G. A. Botton,; S. Y. Savrasov,; C. J. Humphreys,; A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.
[55]
J. K. Nørskov,; J. Rossmeisl,; A. Logadottir,; L. Lindqvist,; J. R. Kitchin,; T. Bligaard,; H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
[56]
A. A. Peterson,; F. Abild-Pedersen,; F. Studt,; J. Rossmeisl,; J. K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.
[57]
K. Zhou,; W. J. Zhou,; L. J. Yang,; J. Lu,; S. Cheng,; W. J. Mai,; Z. H. Tang,; L. G. Li,; S. W. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530-7538.
[58]
G. Wang,; K. Ye,; J. Q. Shao,; Y. Y. Zhang,; K. Zhu,; K. Cheng,; J. Yan,; G. L. Wang,; D. X. Cao, Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2018, 43, 9316-9325.
[59]
Y. Lin,; L. B. He,; T. Chen,; D. Zhou,; L. Wu,; X. D. Hou,; C. B. Zheng, Cost-effective and environmentally friendly synthesis of 3D Ni2P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. J. Mater. Chem. A 2018, 6, 4088-4094.
[60]
Y. Q. Miao,; L. Ouyang,; S. L. Zhou,; L. N. Xu,; Z. Y. Yang,; M. S. Xiao,; R. Z. Ouyang, Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 2014, 53, 428-439.
[61]
V. Vedharathinam,; G. G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660-665.
[62]
X. Zhang,; Y. Y. Liu,; Q. Z. Xiong,; G. Q. Liu,; C. J. Zhao,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Vapour-phase hydrothermal synthesis of Ni2P nanocrystallines on carbon fiber cloth for high-efficiency H2 production and simultaneous urea decomposition. Electrochim. Acta 2017, 254, 44-49.