[1]
M. V. Kovalenko,; L. Manna,; A. Cabot,; Z. Hens,; D. V. Talapin,; C. R. Kagan,; V. I. Klimov,; A. L. Rogach,; P. Reiss,; D. J. Milliron, et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012-1057.
[2]
X. J. Zhang,; X. X. Wu,; X. Y. Liu,; G. Y. Chen,; Y. K. Wang,; J. C. Bao,; X. X. Xu,; X. F. Liu,; Q. Zhang,; K. K. Yu, et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464-4471.
[3]
N. S. Makarov,; S. J. Guo,; O. Isaienko,; W. Y. Liu,; I. Robel,; V. I. Klimov, Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349-2362.
[4]
G. Nedelcu,; L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; M. J. Grotevent,; M. V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.
[5]
J. Z. Song,; J. H. Li,; X. M. Li,; L. M. Xu,; Y. H. Dong,; H. B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[6]
S. Yakunin,; L. Protesescu,; F. Krieg,; M. I. Bodnarchuk,; G. Nedelcu,; M. Humer,; G. De Luca,; M. Fiebig,; W. Heiss,; M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
[7]
P. Ramasamy,; D. H. Lim,; B. Kim,; S. H. Lee,; M. S. Lee,; J. S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067-2070.
[8]
J. Pan,; L. N. Quan,; Y. B. Zhao,; W. Peng,; B. Murali,; S. P. Sarmah,; M. J. Yuan,; L. Sinatra,; N. M. Alyami,; J. K. Liu, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718-8725.
[9]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[10]
X. X. Sheng,; G. Y. Chen,; C. Wang,; W. Q. Wang,; J. F. Hui,; Q. Zhang,; K. H. Yu,; W. Wei,; M. D. Yi,; M. Zhang, et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv. Funct. Mater. 2018, 28, 1800283.
[11]
Y. Li,; X. Y. Wang,; W. N. Xue,; W. Wang,; W. Zhu,; L. J. Zhao, Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785-789.
[12]
W. T. Song,; Y. M. Wang,; B. Wang,; Y. F. Yao,; W. G. Wang,; J. H. Wu,; Q. Shen,; W. J. Luo,; Z. G. Zou, Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795-801.
[13]
X. X. Sheng,; Y. Liu,; Y. Wang,; Y. F. Li,; X. Wang,; X. P. Wang,; Z. H. Dai,; J. C. Bao,; X. X. Xu, Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions. Adv. Mater. 2017, 29, 1700150.
[14]
J. L. Yang,; B. D. Siempelkamp,; D. Y. Liu,; T. L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955-1963.
[15]
Y. Z. Li,; X. M. Xu,; C. C. Wang,; B. Ecker,; J. L. Yang,; J. S. Huang,; Y. L. Gao, Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 2017, 121, 3904-3910.
[16]
X. Q. Xiang,; H. Lin,; R. F. Li,; Y. Cheng,; Q. M. Huang,; J. Xu,; C. Y. Wang,; X. Y. Chen,; Y. S. Wang, Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Res. 2019, 12, 1049-1054.
[17]
H. W. Yang,; Y. Q. Feng,; Z. Y. Tu,; K. Su,; X. Z. Fan,; B. J. Liu,; Z. P. Shi,; Y. Z. Zhang,; C. Y. Zhao,; B. Zhang, Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Res. 2019, 12, 3129-3134.
[18]
G. C. Yuan,; C. Ritchie,; M. Ritter,; S. Murphy,; D. E. Gómez,; P. Mulvaney, The degradation and blinking of single CsPbI3 perovskite quantum dots. J. Phys. Chem. C 2018, 122, 13407-13415.
[19]
X. Yuan,; X. M. Hou,; J. Li,; C. Q. Qu,; W. J. Zhang,; J. L. Zhao,; H. B. Li, Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934-8940.
[20]
A. Merdasa,; M. Bag,; Y. X. Tian,; E. Källman,; A. Dobrovolsky,; I. G. Scheblykin, Super-resolution luminescence microspectroscopy reveals the mechanism of photoinduced degradation in CH3NH3PbI3 perovskite nanocrystals. J. Phys. Chem. C 2016, 120, 10711-10719.
[21]
X. M. Li,; Y. Wu,; S. L. Zhang,; B. Cai,; Y. Gu,; J. Z. Song,; H. B. Zeng, CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
[22]
W. L. Zheng,; Z. C. Li,; C. Y. Zhang,; B. Wang,; Q. G. Zhang,; Q. Wan,; L. Kong,; L. Li, Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461-1465.
[23]
C. Sun,; Y. Zhang,; C. Ruan,; C. Y. Yin,; X. Y. Wang,; Y. D. Wang,; W. W. Yu, Efficient and stable white leds with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088-10094.
[24]
S. Q. Huang,; Z. C. Li,; L. Kong,; N. W. Zhu,; A. D. Shan,; L. Li, Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749-5752.
[25]
H. C. Wang,; S. Y. Lin,; A. C. Tang,; B. P. Singh,; H. C. Tong,; C. Y. Chen,; Y. C. Lee,; T. L. Tsai,; R. S. Liu, Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924-7929.
[26]
L. Gomez,; C. De Weerd,; J. L. Hueso,; T. Gregorkiewicz, Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale 2017, 9, 631-636.
[27]
X. G. Wu,; J. L. Tang,; F. Jiang,; X. X. Zhu,; Y. L. Zhang,; D. B. Han,; L. X. Wang,; H. Z. Zhong, Highly luminescent red emissive perovskite quantum dots-embedded composite films: Ligands capping and caesium doping-controlled crystallization process. Nanoscale 2019, 11, 4942-4947.
[28]
R. K. Misra,; S. Aharon,; B. L. Li,; D. Mogilyansky,; I. Visoly-Fisher,; L. Etgar,; E. A. Katz, Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326-330.
[29]
J. J. Xue,; T. Wu,; Y. Q. Dai,; Y. N. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298-5415.
[30]
G. W. Peterson,; A. X. Lu,; T. H. Epps III, Tuning the morphology and activity of electrospun polystyrene/UIO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal. ACS Appl. Mater. Interfaces 2017, 9, 32248-32254.
[31]
C. C. Lin,; D. H. Jiang,; C. C. Kuo,; C. J. Cho,; Y. H. Tsai,; T. Satoh,; C. Su, Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2210-2215.
[32]
Y. W. Wang,; Y. H. Zhu,; J. F. Huang,; J. Cai,; J. R. Zhu,; X. L. Yang,; J. H. Shen,; H. Jiang,; C. Z. Li, CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253-4258.
[33]
Y. F. Wang,; Y. H. Zhu,; J. F. Huang,; J. Cai,; J. R. Zhu,; X. L. Yang,; J. H. Shen,; C. Z. Li, Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2017, 2, 225-232.
[34]
K. Friedemann,; A. Turshatov,; K. Landfester,; D. Crespy, Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning. Langmuir 2011, 27, 7132-7139.
[35]
Z. J. Ye,; L. Wei,; Y. L. Li,; L. H. Xiao, Efficient modulation of β-amyloid peptide fibrillation with polymer nanoparticles revealed by super-resolution optical microscopy. Anal. Chem. 2019, 91, 8582-8590.
[36]
Z. J. Ye,; L. Wei,; X. Geng,; X. Wang,; Z. H. Li,; L. H. Xiao, Mitochondrion-specific blinking fluorescent bioprobe for nanoscopic monitoring of mitophagy. ACS Nano 2019, 13, 11593-11602.
[37]
A. Merdasa,; Y. X. Tian,; R. Camacho,; A. Dobrovolsky,; E. Debroye,; E. L. Unger,; J. Hofkens,; V. Sundstrom,; I. G. Scheblykin, “Supertrap” at work: Extremely efficient nonradiative recombination channels in MAPbI3 perovskites revealed by luminescence super-resolution imaging and spectroscopy. ACS Nano 2017, 11, 5391-5404.
[38]
D. Wöll,; C. Flors, Super-resolution fluorescence imaging for materials science. Small Methods 2017, 1, 1700191.
[39]
B. E. Urban,; B. Q. Dong,; T. Q. Nguyen,; V. Backman,; C. Sun,; H. F. Zhang, Subsurface super-resolution imaging of unstained polymer nanostructures. Sci. Rep. 2016, 6, 28156.
[40]
A. Kaltbeitzel,; K. Friedemann,; A. Turshatov,; C. Schönecker,; I. Lieberwirth,; K. Landfester,; D. Crespy, STED analysis of droplet deformation during emulsion electrospinning. Macromol. Chem. Phys. 2017, 218, 1600547.
[41]
C. G. Wang,; M. Taki,; Y. Sato,; A. Fukazawa,; T. Higashiyama,; S. Yamaguchi, Super-photostable phosphole-based dye for multiple-acquisition stimulated emission depletion imaging. J. Am. Chem. Soc. 2017, 139, 10374-10381.
[42]
A. Sarkar,; P. Acharyya,; R. Sasmal,; P. Pal,; S. S. Agasti,; K. Biswas, Synthesis of ultrathin few-layer 2D nanoplates of halide perovskite Cs3Bi2I9 and single-nanoplate super-resolved fluorescence microscopy. Inorg. Chem. 2018, 57, 15558-15565.
[43]
L. Wei,; C. Liu,; B. Chen,; P. Zhou,; H. C. Li,; L. H. Xiao,; E. S. Yeung, Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution. Anal. Chem. 2013, 85, 3789-3793.
[44]
Z. J. Ye,; X. Wang,; L. H. Xiao, Single-particle tracking with scattering-based optical microscopy. Anal. Chem. 2019, 91, 15327-15334.
[45]
L. Wei,; Y. H. Ma,; X. P. Zhu,; J. H. Xu,; Y. X. Wang,; H. G. Duan,; L. H. Xiao, Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy. Nanoscale 2017, 9, 8747-8755.
[46]
Y. Y. Ma,; Z. J. Ye,; C. Zhang,; X. L. Wang,; H. W. Li,; M. Wong,; H. B. Luo,; L. H. Xiao, Deep red blinking fluorophore for nanoscopic imaging and inhibition of beta-amyloid peptide fibrillation. ACS Nano 2020, 14, 11341-11351.
[47]
H. Liu,; Z. J. Ye,; X. Wang,; L. Wei,; L. H. Xiao, Molecular and living cell dynamic assays with optical microscopy imaging techniques. Analyst 2019, 144, 859-871.
[48]
Y. Y. Ma,; X. Wang,; H. Liu,; L. Wei,; L. H. Xiao, Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal. Bioanal. Chem. 2019, 411, 4445-4463.
[49]
A. D. Zhang,; C. Q. Dong,; J. C. Ren, Tuning blinking behavior of highly luminescent cesium lead halide nanocrystals through varying halide composition. J. Phys. Chem. C 2017, 121, 13314-13323.
[50]
Y. S. Park,; S. J. Guo,; N. S. Makarov,; V. I. Klimov, Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386-10393.
[51]
F. R. Hu,; H. C. Zhang,; C. Sun,; C. Y. Yin,; B. Y. Lv,; C. F. Zhang,; W. W. Yu,; X. Y. Wang,; Y. Zhang,; M. Xiao, Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 2015, 9, 12410-12416.
[52]
S. Seth,; T. Ahmed,; A. Samanta, Photoluminescence flickering and blinking of single CsPbBr3 perovskite nanocrystals: Revealing explicit carrier recombination dynamics. J. Phys. Chem. Lett. 2018, 9, 7007-7014.