[1]
H. L. Pan,; J. Z. Chen,; R. G. Cao,; V. Murugesan,; N. N. Rajput,; K. S. Han,; K. Persson,; L. Estevez,; M. H. Engelhard,; J. G. Zhang, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813-820.
[2]
X. Y. Tao,; J. G. Wang,; C. Liu,; H. T. Wang,; H. B. Yao,; G. Y. Zheng,; Z. W. Seh,; Q. X. Cai,; W. Y. Li,; G. M. Zhou, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.
[3]
S. Z. Wang,; H. Y. Chen,; J. X. Liao,; Q. Sun,; F. P. Zhao,; J. Luo,; X. T. Lin,; X. B. Niu,; M. Q. Wu,; R. Y. Li, et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 2019, 4, 755-762.
[4]
H. J. Yang,; C. Guo,; J. H. Chen,; A. Naveed,; J. Yang,; Y. Nuli,; J. L. Wang, An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 791-795.
[5]
F. Wu,; Y. S. Ye,; R. J. Chen,; T. Zhao,; J. Qian,; X. X. Zhang,; L. Li,; Q. M. Huang,; X. D. Bai,; Y. Cui, Gluing carbon black and sulfur at nanoscale: A polydopamine-based “nano-binder” for double-shelled sulfur cathodes. Adv. Energy Mater. 2017, 7, 1601591.
[6]
C. F. Zhang,; Y. L. Ma,; X. T. Zhang,; S. Abdolhosseinzadeh,; H. W. Sheng,; W. Lan,; A. Pakdel,; J. Heier,; F. Nüesch, Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29-55.
[7]
B. Papandrea,; X. Xu,; Y. X. Xu,; C. Y. Chen,; Z. Y. Lin,; G. M. Wang,; Y. Z. Luo,; M. Liu,; Y. Huang,; L. Q. Mai, et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.
[8]
J. T. Zhang,; Z. Li,; Y. Chen,; S. Y. Gao,; X. W. Lou, Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944-10948.
[9]
S. K. Park,; J. K. Lee,; Y. C. Kang, Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries. Adv. Funct. Mater. 2018, 28, 1705264.
[10]
X. L. Ji,; K. T. Lee,; L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[11]
C. F. Zhang,; L. F. Cui,; S. Abdolhosseinzadeh,; J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat. 2020, 2, 613-638.
[12]
L. F. Duan,; L. J. Zhao,; H. Cong,; X. Y. Zhang,; W. Lü,; C. L. Xue, Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries. Small 2019, 15, 1804347.
[13]
X. X. Peng,; Y. Q. Lu,; L. L. Zhou,; T. Sheng,; S. Y. Shen,; H. G. Liao,; L. Huang,; J. T. Li,; S. G. Sun, Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy 2017, 32, 503-510.
[14]
Y. F. Yuan,; G. Q. Tan,; J. G. Wen,; J. Lu,; L. Ma,; C. Liu,; X. B. Zuo,; R. Shahbazian-Yassar,; T. P. Wu,; K. Amine, Encapsulating various sulfur allotropes within graphene nanocages for long-lasting lithium storage. Adv. Funct. Mater. 2018, 28, 1706443.
[15]
X. Liu,; J. Q. Huang,; Q. Zhang,; L. Q. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
[16]
W. Kou,; X. C. Li,; Y. Liu,; X. P. Zhang,; S. R. Yang,; X. B. Jiang,; G. H. He,; Y. Dai,; W. J. Zheng,; G. H. Yu, Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano 2019, 13, 5900-5909.
[17]
T. H. Zhou,; W. Lv,; J. Li,; G. M. Zhou,; Y. Zhao,; S. X. Fan,; B. L. Liu,; B. H. Li,; F. Y. Kang,; Q. H. Yang, Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.
[18]
Z. H. Sun,; J. Q. Zhang,; L. C. Yin,; G. J. Hu,; R. P. Fang,; H. M. Cheng,; F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.
[19]
R. P. Fang,; S. Y. Zhao,; Z. H. Sun,; D. W. Wang,; H. M. Cheng,; F. Li, More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
[20]
M. Rana,; S. A. Ahad,; M. Li,; B. Luo,; L. Z. Wang,; I. Gentle,; R. Knibbe, Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289-310.
[21]
W. D. Zhou,; C. M. Wang,; Q. L. Zhang,; H. D. Abruña,; Y. He,; J. W. Wang,; S. X. Mao,; X. C. Xiao, Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.
[22]
X. B. Cheng,; J. Q. Huang,; Q. Zhang,; H. J. Peng,; M. Q. Zhao,; F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 2014, 4, 65-72.
[23]
W. C. Du,; Y. X. Yin,; X. X. Zeng,; J. L. Shi,; S. F. Zhang,; L. J. Wan,; Y. G. Guo, Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 3584-3590.
[24]
C. H. Wang,; H. W. Chen,; W. L. Dong,; J. Ge,; W. Lu,; X. D. Wu,; L. Guo,; L. W. Chen, Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem. Commun. 2014, 50, 1202-1204.
[25]
H. W. Chen,; C. C. Wang,; W. L. Dong,; W. Lu,; Z. L. Du,; L. W. Chen, Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano lett. 2015, 15, 798-802.
[26]
L. Wang,; G. H. Zhang,; X. J. Zhang,; H. M. Shi,; W. Zeng,; H. Zhang,; Q. Liu,; C. C. Li,; Q. H. Liu,; H. G. Duan, Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801-14810.
[27]
F. Pei,; L. L. Lin,; D. H. Ou,; Z. M. Zheng,; S. G. Mo,; X. L. Fang,; N. F. Zheng, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 482.
[28]
H. J. Peng,; W. T. Xu,; L. Zhu,; D. W. Wang,; J. Q. Huang,; X. B. Cheng,; Z. Yuan,; F. Wei,; Q. Zhang, 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351-6358.
[29]
J. Zhang,; C. P. Yang,; Y. X. Yin,; L. J. Wan,; Y. G. Guo, Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.
[30]
S. J. Zhang,; W. D. Xiao,; Y. S. Zhang,; K. L. Liu,; X. D. Zhang,; J. T. Zhao,; Z. Wang,; P. Zhang,; G. S. Shao, Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li-S/graphene batteries. J. Mater. Chem. A 2018, 6, 22555-22565.
[31]
K. Shen,; H. L. Mei,; B. Li,; J. W. Ding,; S. B. Yang, 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.
[32]
L. F. Fei,; X. G. Li,; W. T. Bi,; Z. W. Zhuo,; W. F. Wei,; L. Sun,; W. Lu,; X. J. Wu,; K. Y. Xie,; C. Z, Wu, et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936-5942.
[33]
J. S. Yeon,; S. Yun,; J. M. Park,; H. S. Park, Surface-modified sulfur nanorods immobilized on radially assembled open-porous graphene microspheres for lithium-sulfur batteries. ACS Nano 2019, 13, 5163-5171.
[34]
C. Wang,; X. S. Wang,; Y. J. Wang,; J. T. Chen,; H. H. Zhou,; Y. H. Huang, Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2015, 11, 678-686.
[35]
M. W. Xiang,; H. Wu,; H. Liu,; J. Huang,; Y. F. Zheng,; L. Yang,; P. Jing,; Y. Zhang,; S. X. Dou,; H. K. Liu, A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.
[36]
H. Tang,; W. L. Li,; L. M. Pan,; K. J. Tu,; F. Du,; T. Qiu,; J. Yang,; C. P. Cullen,; N. McEvoy,; C. F. Zhang, A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 2019, 29, 1901907.
[37]
H. Tang,; W. L. Li,; L. M. Pan,; C. P. Cullen,; Y. Liu,; A. Pakdel,; D. H. Long,; J. Yang,; N. McEvoy,; G. S. Duesberg, et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.
[38]
J. Ma,; Z. Fang,; Y. Yan,; Z. Z. Yang,; L. Gu,; Y. S. Hu,; H. Li,; Z. X. Wang,; X. J. Huang, Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500046.
[39]
S. K. Liu,; K. Xie,; Z. X. Chen,; Y. J. Li,; X. B. Hong,; J. Xu,; L. J. Zhou,; J. F. Yuan,; C. M. Zheng, A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 11395-11402.
[40]
C. F. Zhang,; M. Y. Liang,; S. H. Park,; Z. F. Lin,; A. Seral-Ascaso,; L. L. Wang,; A. Pakdel,; C. Ó Coileáin,; J. Boland,; O. Ronan, et al. Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy Environ. Sci. 2020, 13, 2124-2133.
[41]
C. X. Li,; Z. C. Xi,; S. H. Dong,; X. L. Ge,; Z. Q. Li,; C. X. Wang,; L. W. Yin, CNTs/MOFs-derived carbon/Al2(OH)2.76F3.24/S cathodes for high-performance lithium-sulfur batteries. Energy Storage Mater. 2018, 12, 341-351.
[42]
Z. Z. Du,; X. J. Chen,; W. Hu,; C. H. Chuang,; S. Xie,; A. J. Hu,; W. S. Yan,; X. H. Kong,; X. J. Wu,; H. X. Ji, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977-3985.
[43]
T. H. An,; D. R. Deng,; M. Lei,; Q. H. Wu,; Z. W. Tian,; M. S. Zheng,; Q. F. Dong, MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858-12864.
[44]
J. W. Zhou,; R. Li,; X. X. Fan,; Y. F. Chen,; R. D. Han,; W. Li,; J. Zheng,; B. Wang,; X. G. Li, Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci. 2014, 7, 2715-2724.
[45]
Z. S. Wang,; J. D. Shen,; J. Liu,; X. J. Xu,; Z. B. Liu,; R. Z. Hu,; L. C. Yang,; Y. Z. Feng,; J. Liu,; Z. C. Shi, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.
[46]
P. Han,; S. H. Chung,; A. Manthiram, Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 317-324.
[47]
J. J. Chen,; R. M. Yuan,; J. M. Feng,; Q. Zhang,; J. X. Huang,; G. Fu,; M. S. Zheng,; B. Ren,; Q. F. Dong, Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048-2055.
[48]
T. Y. Lei,; W. Chen,; W. Q. Lv,; J. W. Huang,; J. Zhu,; J. W. Chu,; C. Y. Yan,; C. Y. Wu,; Y. C. Yan,; W. D. He, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-2104.
[49]
B. P. Vinayan,; T. Diemant,; X. M. Lin,; M. A. Cambaz,; U. Golla-Schindler,; U. Kaiser,; R. Jürgen Behm,; M. Fichtner, Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.