Journal Home > Volume 14 , Issue 5

Despite great progress of lithium-sulfur (Li-S) battery performance at the laboratory-level, both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes and lean electrolytes. Herein, a novel carbon foam integrated by hollow carbon bubble nanoreactors with ultrahigh pore volume of 6.9 cm3·g-1 is meticulously designed for ultrahigh sulfur content up to 96 wt.%. Tailoring polysulfide trapping and ion/electron transport kinetics during the charge-discharge process can be achieved by adjusting the wall thickness of hollow carbon bubbles. And a further in-depth understanding of electrochemical reaction mechanism for the cathode is impelled by the in-situ Raman spectroscopy. As a result, the as-prepared cathode delivers high specific capacitances of 1,269 and 695 mAh·g-1 at 0.1 and 5 C, respectively. Furthermore, Li-S pouch cells with high areal sulfur loading of 6.9 mg·cm-2 yield exceptional practical energy density of 382 Wh·kg-1 under lean electrolyte of 3.5 μL·mg-1, which demonstrates the great potential for realistic high-energy Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells

Show Author's information Lei Wang1,3,§Shuangke Liu2,§Jin Hu1Xianan Zhang1Xin Li1Guanhua Zhang1( )Yujie Li2Chunman Zheng2Xiaobin Hong2( )Huigao Duan1 ( )
National Engineering Research Center for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
School of Mechatronics Engineering and Automation, Foshan University, Foshan 528225, China

Abstract

Despite great progress of lithium-sulfur (Li-S) battery performance at the laboratory-level, both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes and lean electrolytes. Herein, a novel carbon foam integrated by hollow carbon bubble nanoreactors with ultrahigh pore volume of 6.9 cm3·g-1 is meticulously designed for ultrahigh sulfur content up to 96 wt.%. Tailoring polysulfide trapping and ion/electron transport kinetics during the charge-discharge process can be achieved by adjusting the wall thickness of hollow carbon bubbles. And a further in-depth understanding of electrochemical reaction mechanism for the cathode is impelled by the in-situ Raman spectroscopy. As a result, the as-prepared cathode delivers high specific capacitances of 1,269 and 695 mAh·g-1 at 0.1 and 5 C, respectively. Furthermore, Li-S pouch cells with high areal sulfur loading of 6.9 mg·cm-2 yield exceptional practical energy density of 382 Wh·kg-1 under lean electrolyte of 3.5 μL·mg-1, which demonstrates the great potential for realistic high-energy Li-S batteries.

Keywords: lithium-sulfur batteries, high energy density, hollow carbon bubble nanoreactors, ultrahigh pore volume, tunable wall thickness

References(49)

[1]
H. L. Pan,; J. Z. Chen,; R. G. Cao,; V. Murugesan,; N. N. Rajput,; K. S. Han,; K. Persson,; L. Estevez,; M. H. Engelhard,; J. G. Zhang, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813-820.
[2]
X. Y. Tao,; J. G. Wang,; C. Liu,; H. T. Wang,; H. B. Yao,; G. Y. Zheng,; Z. W. Seh,; Q. X. Cai,; W. Y. Li,; G. M. Zhou, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.
[3]
S. Z. Wang,; H. Y. Chen,; J. X. Liao,; Q. Sun,; F. P. Zhao,; J. Luo,; X. T. Lin,; X. B. Niu,; M. Q. Wu,; R. Y. Li, et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 2019, 4, 755-762.
[4]
H. J. Yang,; C. Guo,; J. H. Chen,; A. Naveed,; J. Yang,; Y. Nuli,; J. L. Wang, An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 791-795.
[5]
F. Wu,; Y. S. Ye,; R. J. Chen,; T. Zhao,; J. Qian,; X. X. Zhang,; L. Li,; Q. M. Huang,; X. D. Bai,; Y. Cui, Gluing carbon black and sulfur at nanoscale: A polydopamine-based “nano-binder” for double-shelled sulfur cathodes. Adv. Energy Mater. 2017, 7, 1601591.
[6]
C. F. Zhang,; Y. L. Ma,; X. T. Zhang,; S. Abdolhosseinzadeh,; H. W. Sheng,; W. Lan,; A. Pakdel,; J. Heier,; F. Nüesch, Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29-55.
[7]
B. Papandrea,; X. Xu,; Y. X. Xu,; C. Y. Chen,; Z. Y. Lin,; G. M. Wang,; Y. Z. Luo,; M. Liu,; Y. Huang,; L. Q. Mai, et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.
[8]
J. T. Zhang,; Z. Li,; Y. Chen,; S. Y. Gao,; X. W. Lou, Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944-10948.
[9]
S. K. Park,; J. K. Lee,; Y. C. Kang, Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries. Adv. Funct. Mater. 2018, 28, 1705264.
[10]
X. L. Ji,; K. T. Lee,; L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[11]
C. F. Zhang,; L. F. Cui,; S. Abdolhosseinzadeh,; J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat. 2020, 2, 613-638.
[12]
L. F. Duan,; L. J. Zhao,; H. Cong,; X. Y. Zhang,; W. Lü,; C. L. Xue, Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries. Small 2019, 15, 1804347.
[13]
X. X. Peng,; Y. Q. Lu,; L. L. Zhou,; T. Sheng,; S. Y. Shen,; H. G. Liao,; L. Huang,; J. T. Li,; S. G. Sun, Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy 2017, 32, 503-510.
[14]
Y. F. Yuan,; G. Q. Tan,; J. G. Wen,; J. Lu,; L. Ma,; C. Liu,; X. B. Zuo,; R. Shahbazian-Yassar,; T. P. Wu,; K. Amine, Encapsulating various sulfur allotropes within graphene nanocages for long-lasting lithium storage. Adv. Funct. Mater. 2018, 28, 1706443.
[15]
X. Liu,; J. Q. Huang,; Q. Zhang,; L. Q. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
[16]
W. Kou,; X. C. Li,; Y. Liu,; X. P. Zhang,; S. R. Yang,; X. B. Jiang,; G. H. He,; Y. Dai,; W. J. Zheng,; G. H. Yu, Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano 2019, 13, 5900-5909.
[17]
T. H. Zhou,; W. Lv,; J. Li,; G. M. Zhou,; Y. Zhao,; S. X. Fan,; B. L. Liu,; B. H. Li,; F. Y. Kang,; Q. H. Yang, Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.
[18]
Z. H. Sun,; J. Q. Zhang,; L. C. Yin,; G. J. Hu,; R. P. Fang,; H. M. Cheng,; F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.
[19]
R. P. Fang,; S. Y. Zhao,; Z. H. Sun,; D. W. Wang,; H. M. Cheng,; F. Li, More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
[20]
M. Rana,; S. A. Ahad,; M. Li,; B. Luo,; L. Z. Wang,; I. Gentle,; R. Knibbe, Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289-310.
[21]
W. D. Zhou,; C. M. Wang,; Q. L. Zhang,; H. D. Abruña,; Y. He,; J. W. Wang,; S. X. Mao,; X. C. Xiao, Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.
[22]
X. B. Cheng,; J. Q. Huang,; Q. Zhang,; H. J. Peng,; M. Q. Zhao,; F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 2014, 4, 65-72.
[23]
W. C. Du,; Y. X. Yin,; X. X. Zeng,; J. L. Shi,; S. F. Zhang,; L. J. Wan,; Y. G. Guo, Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 3584-3590.
[24]
C. H. Wang,; H. W. Chen,; W. L. Dong,; J. Ge,; W. Lu,; X. D. Wu,; L. Guo,; L. W. Chen, Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem. Commun. 2014, 50, 1202-1204.
[25]
H. W. Chen,; C. C. Wang,; W. L. Dong,; W. Lu,; Z. L. Du,; L. W. Chen, Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano lett. 2015, 15, 798-802.
[26]
L. Wang,; G. H. Zhang,; X. J. Zhang,; H. M. Shi,; W. Zeng,; H. Zhang,; Q. Liu,; C. C. Li,; Q. H. Liu,; H. G. Duan, Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801-14810.
[27]
F. Pei,; L. L. Lin,; D. H. Ou,; Z. M. Zheng,; S. G. Mo,; X. L. Fang,; N. F. Zheng, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 482.
[28]
H. J. Peng,; W. T. Xu,; L. Zhu,; D. W. Wang,; J. Q. Huang,; X. B. Cheng,; Z. Yuan,; F. Wei,; Q. Zhang, 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351-6358.
[29]
J. Zhang,; C. P. Yang,; Y. X. Yin,; L. J. Wan,; Y. G. Guo, Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.
[30]
S. J. Zhang,; W. D. Xiao,; Y. S. Zhang,; K. L. Liu,; X. D. Zhang,; J. T. Zhao,; Z. Wang,; P. Zhang,; G. S. Shao, Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li-S/graphene batteries. J. Mater. Chem. A 2018, 6, 22555-22565.
[31]
K. Shen,; H. L. Mei,; B. Li,; J. W. Ding,; S. B. Yang, 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.
[32]
L. F. Fei,; X. G. Li,; W. T. Bi,; Z. W. Zhuo,; W. F. Wei,; L. Sun,; W. Lu,; X. J. Wu,; K. Y. Xie,; C. Z, Wu, et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936-5942.
[33]
J. S. Yeon,; S. Yun,; J. M. Park,; H. S. Park, Surface-modified sulfur nanorods immobilized on radially assembled open-porous graphene microspheres for lithium-sulfur batteries. ACS Nano 2019, 13, 5163-5171.
[34]
C. Wang,; X. S. Wang,; Y. J. Wang,; J. T. Chen,; H. H. Zhou,; Y. H. Huang, Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2015, 11, 678-686.
[35]
M. W. Xiang,; H. Wu,; H. Liu,; J. Huang,; Y. F. Zheng,; L. Yang,; P. Jing,; Y. Zhang,; S. X. Dou,; H. K. Liu, A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.
[36]
H. Tang,; W. L. Li,; L. M. Pan,; K. J. Tu,; F. Du,; T. Qiu,; J. Yang,; C. P. Cullen,; N. McEvoy,; C. F. Zhang, A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 2019, 29, 1901907.
[37]
H. Tang,; W. L. Li,; L. M. Pan,; C. P. Cullen,; Y. Liu,; A. Pakdel,; D. H. Long,; J. Yang,; N. McEvoy,; G. S. Duesberg, et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.
[38]
J. Ma,; Z. Fang,; Y. Yan,; Z. Z. Yang,; L. Gu,; Y. S. Hu,; H. Li,; Z. X. Wang,; X. J. Huang, Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500046.
[39]
S. K. Liu,; K. Xie,; Z. X. Chen,; Y. J. Li,; X. B. Hong,; J. Xu,; L. J. Zhou,; J. F. Yuan,; C. M. Zheng, A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 11395-11402.
[40]
C. F. Zhang,; M. Y. Liang,; S. H. Park,; Z. F. Lin,; A. Seral-Ascaso,; L. L. Wang,; A. Pakdel,; C. Ó Coileáin,; J. Boland,; O. Ronan, et al. Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy Environ. Sci. 2020, 13, 2124-2133.
[41]
C. X. Li,; Z. C. Xi,; S. H. Dong,; X. L. Ge,; Z. Q. Li,; C. X. Wang,; L. W. Yin, CNTs/MOFs-derived carbon/Al2(OH)2.76F3.24/S cathodes for high-performance lithium-sulfur batteries. Energy Storage Mater. 2018, 12, 341-351.
[42]
Z. Z. Du,; X. J. Chen,; W. Hu,; C. H. Chuang,; S. Xie,; A. J. Hu,; W. S. Yan,; X. H. Kong,; X. J. Wu,; H. X. Ji, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977-3985.
[43]
T. H. An,; D. R. Deng,; M. Lei,; Q. H. Wu,; Z. W. Tian,; M. S. Zheng,; Q. F. Dong, MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858-12864.
[44]
J. W. Zhou,; R. Li,; X. X. Fan,; Y. F. Chen,; R. D. Han,; W. Li,; J. Zheng,; B. Wang,; X. G. Li, Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci. 2014, 7, 2715-2724.
[45]
Z. S. Wang,; J. D. Shen,; J. Liu,; X. J. Xu,; Z. B. Liu,; R. Z. Hu,; L. C. Yang,; Y. Z. Feng,; J. Liu,; Z. C. Shi, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.
[46]
P. Han,; S. H. Chung,; A. Manthiram, Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 317-324.
[47]
J. J. Chen,; R. M. Yuan,; J. M. Feng,; Q. Zhang,; J. X. Huang,; G. Fu,; M. S. Zheng,; B. Ren,; Q. F. Dong, Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048-2055.
[48]
T. Y. Lei,; W. Chen,; W. Q. Lv,; J. W. Huang,; J. Zhu,; J. W. Chu,; C. Y. Yan,; C. Y. Wu,; Y. C. Yan,; W. D. He, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-2104.
[49]
B. P. Vinayan,; T. Diemant,; X. M. Lin,; M. A. Cambaz,; U. Golla-Schindler,; U. Kaiser,; R. Jürgen Behm,; M. Fichtner, Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.
File
12274_2020_3181_MOESM1_ESM.pdf (6.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2020
Revised: 30 September 2020
Accepted: 12 October 2020
Published: 05 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51702095, 51702362, 51722503, and 51621004), Natural Science Foundation of Hunan Province, China (No. 2018JJ3041), and the scientific research project of National University of Defense Technology (Nos. ZK19-27 and ZK17-03-61).

Return