Journal Home > Volume 14 , Issue 4

The 2019 coronavirus disease (COVID-19) has affected more than 200 countries. Wearing masks can effectively cut off the virus spreading route since the coronavirus is mainly spreading by respiratory droplets. However, the common surgical masks cannot be reused, resulting in the increasing economic and resource consumption around the world. Herein, we report a superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film, with high-density edges of standing structured graphene nanosheets. The GNEC mask exhibits an excellent hydrophobic ability (water contact angle: 157.9°) and an outstanding filtration efficiency with 100% bacterial filtration efficiency (BFE). In addition, the GNEC mask shows the prominent photo-sterilize performance, heating up to 110 °C quickly under the solar illumination. These high performances may facilitate the combat against the COVID-19 outbreaks, while the reusable masks help reducing the economic and resource consumption.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film

Show Author's information Zezhou Lin1Zheng Wang2Xi Zhang1( )Dongfeng Diao1
Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060, China
Shenzhen Anhio Medical Technology Co., Ltd, Shenzhen 518110, China

Abstract

The 2019 coronavirus disease (COVID-19) has affected more than 200 countries. Wearing masks can effectively cut off the virus spreading route since the coronavirus is mainly spreading by respiratory droplets. However, the common surgical masks cannot be reused, resulting in the increasing economic and resource consumption around the world. Herein, we report a superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film, with high-density edges of standing structured graphene nanosheets. The GNEC mask exhibits an excellent hydrophobic ability (water contact angle: 157.9°) and an outstanding filtration efficiency with 100% bacterial filtration efficiency (BFE). In addition, the GNEC mask shows the prominent photo-sterilize performance, heating up to 110 °C quickly under the solar illumination. These high performances may facilitate the combat against the COVID-19 outbreaks, while the reusable masks help reducing the economic and resource consumption.

Keywords: COVID-19, superhydrophobic, graphene nanosheet, photo-sterilize

References(39)

[1]
K. G. Andersen,; A. Rambaut,; W. I. Lipkin,; E. C. Holmes,; R. F. Garry, The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450-452.
[2]
H. W. Wang,; Z. Z. Wang,; Y. Q. Dong,; R. J. Chang,; C. Xu,; X. Y. Yu,; S. X. Zhang,; L. Tsamlag,; M. L. Shang,; J. Y. Huang, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020, 6, 10.
[3]
DOI
[4]
L. R. Zou,; F. Ruan,; M. X. Huang,; L. J. Liang,; H. T. Huang,; Z. S. Hong,; J. X. Yu,; M. Kang,; Y. C. Song,; J. Y. Xia, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New Engl. J. Med. 2020, 382, 1177-1179.
[5]
J. S. M. Peiris,; S. T. Lai,; L. L. M. Poon,; Y. Guan,; L. Y. C. Yam,; W. Lim,; J. Nicholls,; W. K. S. Yee,; W. W. Yan,; M. T. Cheung, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361, 1319-1325.
[6]
S. Karimi,; A. Arabi,; T. Shahraki,; S. Safi, Detection of severe acute respiratory syndrome Coronavirus-2 in the tears of patients with Coronavirus disease 2019. Eye 2020, 34, 1220-1223.
[7]
C. C. Leung,; T. H. Lam,; K. K. Cheng, Mass masking in the COVID- 19 epidemic: People need guidance. Lancet 2020, 395, 945.
[8]
N. H. L. Leung,; D. K. W. Chu,; E. Y. C. Shiu,; K. H. Chan,; J. J. McDevitt,; B. J. P. Hau,; H. L. Yen,; Y. Li,; D. K. M. Ip,; J. S. M. Peiris, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676-680.
[9]
N. El-Atab,; N. Qaiser,; H. Badghaish,; S. F. Shaikh,; M. M. Hussain, Flexible nanoporous template for the design and development of reusable Anti-COVID-19 hydrophobic face masks. ACS Nano 2020, 14, 7659-7665.
[10]
K. Majchrzycka,; M. Okrasa,; J. Szulc,; A. Jachowicz,; B. Gutarowska, Survival of microorganisms on nonwovens used for the construction of filtering facepiece respirators. Int. J. Environ. Res. Public Health 2019, 16, 1154.
[11]
A. Konda,; A. Prakash,; G. A. Moss,; M. Schmoldt,; G. D. Grant,; S. Guha, Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 2020, 14, 6339-6347.
[12]
H. Zhong,; Z. R. Zhu,; J. Lin,; C. F. Cheung,; V. L. Lu,; F. Yan,; C. Y. Chan,; G. Li, Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213-6221.
[13]
S. Ullah,; A. Ullah,; J. Lee,; Y. Jeong,; M. Hashmi,; C. H. Zhu,; K. I. Joo,; H. J. Cha,; I. S. Kim, Reusability comparison of melt-blown vs nanofiber face mask filters for use in the coronavirus pandemic. ACS Appl. Nano Mat. 2020, 3, 7231-7241.
[14]
A. Marmur, Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 2012, 8, 6867-6870.
[15]
H. Zhu,; Z. G. Guo,; W. N. Liu, Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 2014, 50, 3900-3913.
[16]
L. J. Song,; L. W. Sun,; J. Zhao,; X. H. Wang,; J. H. Yin,; S. F. Luan,; W. H. Ming, Synergistic superhydrophobic and photodynamic cotton textiles with remarkable antibacterial activities. ACS Appl. Bio Mater. 2019, 2, 2756-2765.
[17]
D. J. Hong,; I. Ryu,; H. Kwon,; J. J. Lee,; S. Yim, Preparation of superhydrophobic, long-neck vase-like polymer surfaces. Phys. Chem. Chem. Phys. 2013, 15, 11862-11867.
[18]
E. Huovinen,; L. Takkunen,; T. Korpela,; M. Suvanto,; T. T. Pakkanen,; T. A. Pakkanen, Mechanically robust superhydrophobic polymer surfaces based on protective micropillars. Langmuir 2014, 30, 1435-1443.
[19]
M. L. Liu,; Y. F. Luo,; D. M. Jia, Polydimethylsiloxane-based superhydrophobic membranes: Fabrication, durability, repairability, and applications. Polym. Chem. 2020, 11, 2370-2380.
[20]
G. M. Ding,; W. C. Jiao,; R. G. Wang,; M. L. Yan,; Z. M. Chu,; X. D. He, Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. J. Mater. Chem. A 2019, 7, 17766-17774.
[21]
Y. F. Si,; Z. G. Guo, Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale 2015, 7, 5922-5946.
[22]
H. Zhong,; Z. R. Zhu,; P. You,; J. Lin,; C. F. Cheung,; V. L. Lu,; F. Yan,; C. Y. Chan,; G. J. Li, Plasmonic and Superhydrophobic Self- Decontaminating N95 Respirators. ACS Nano 2020, 14, 8846-8854.
[23]
X. Zhang,; Z. Z. Lin,; D. Peng,; L. Ye,; J. F. Zang,; D. Diao, Edge- state-enhanced ultrahigh photoresponsivity of graphene nanosheet- embedded carbon film/silicon heterojunction. Adv. Mater. Interfaces 2019, 6, 1802062.
[24]
C. Wang,; X. Zhang,; D. F. Diao, Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale 2015, 7, 4475-4481.
[25]
X. Zhang,; D. Peng,; Z. Z. Lin,; W. C. Chen,; D. F. Diao, Edge effect on the photodetection ability of the graphene nanocrystallites embedded carbon film coated on p-silicon. Phys. Status Solidi RRL 2019, 13, 1800511.
[26]
Y. Lee,; L. C. Wadsworth, Structure and filtration properties of melt blown polypropylene webs. Polymer Eng. Sci. 1990, 30, 1413-1419.
[27]
Z. G. Wang,; P. J. Li,; Y. F. Chen,; J. B. Liu,; W. L. Zhang,; Z. Guo,; M. D. Dong,; Y. R. Li, Synthesis, characterization and electrical properties of silicon-doped graphene films. J. Mater. Chem. C 2015, 3, 6301-6306.
[28]
X. Zhang,; Y. G. Nie,; W. T. Zheng,; J. L. Kuo,; C. Q. Sun, Discriminative generation and hydrogen modulation of the Dirac- Fermi polarons at graphene edges and atomic vacancies. Carbon 2011, 49, 3615-3621.
[29]
X. Zhang,; C. Wang,; C. Q. Sun,; D. F. Diao, Magnetism induced by excess electrons trapped at diamagnetic edge-quantum well in multi-layer graphene. Appl. Phys. Lett. 2014, 105, 042402.
[30]
T. Enoki,; Y. Kobayashi,; K. I. Fukui, Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609-645.
[31]
D. Ding,; X. Z. Dai,; C. Wang,; D. F. Diao, Temperature dependent crossover between positive and negative magnetoresistance in graphene nanocrystallines embedded carbon film. Carbon 2020, 163, 19-25.
[32]
M. A. Pimenta,; G. Dresselhaus,; M. S. Dresselhaus,; L. G. Cançado,; A. Jorio,; R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1291.
[33]
X. J. Liu,; X. Zhang,; M. L. Bo,; L. Li,; H. W. Tian,; Y. G. Nie,; Y. Sun,; S. Q. Xu,; Y. Wang,; W. T. Zheng, et al. Coordination-resolved electron spectrometrics. Chem. Rev. 2015, 115, 6746-6810.
[34]
H. Zhu,; L. Z. Wu,; X. Meng,; Y. G. Wang,; Y. Huang,; M. H. Lin,; F. Xia, An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale 2020, 12, 11455-11459.
[35]
T. Verho,; C. Bower,; P. Andrew,; S. Franssila,; O. Ikkala,; R. H. A. Ras, Mechanically durable superhydrophobic surfaces. Adv. Mater. 2011, 23, 673-678.
[36]
L. Morawska, Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 2006, 16, 335-347.
[37]
H. W. Cho,; C. S. Yoon,; J. H. Lee,; S. J. Lee,; A. Viner,; E. W. Johnson, Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride. Ann. Occup. Hyg. 2011, 55, 666-680.
[38]
F. Li, Structure, function, and evolution of coronavirus spike proteins. Ann. Rev. Virol. 2016, 3, 237-261.
[39]
P. Lazar,; S. Zhang,; K. Šafářová,; Q. Li,; J. P. Froning,; J. Granatier,; P. Hobza,; R. Zbořil,; F. Besenbacher,; M. D. Dong, et al. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions. ACS Nano 2013, 7, 1646-1651.
File
12274_2020_3158_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2020
Revised: 29 September 2020
Accepted: 04 October 2020
Published: 25 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51605306) and Shenzhen Overseas High-Level Talents Innovation and Entrepreneurship Plan (No. KQJSCX20180328094853770). The authors would like to thank the Electron Microscopy Center (EMC) of Shenzhen University for their technical supports in TEM and FIB.

Return