Journal Home > Volume 14 , Issue 3

Yolk@shell mesoporous nanoparticles have received close attention due to their controllable structures and integrated functions. However, most yolk@shell nanosystems lack self-propulsion. Herein, yolk@spiky-shell structured carbon@silica nanomotors are fabricated with near-infrared (NIR) light self-thermophoretic propulsion as lipase nanocarriers for fuel-free triglyceride degradation. The light propulsion accelerates the accumulation of nanomotors on the droplet interface, and the efficient lipase loading further facilitates the rapid degradation of tributyrin droplets. By adjusting the yolk and spiky structure, the obtained semi-yolk@spiky-shell structured nanomotors exhibit the highest capacity of lipase (442 mg/g) and the highest light-driven diffusion coefficient (ca. 55% increase under 2 W/cm2 irradiation), thus improving the degradation efficiency of triglyceride (93.1% under NIR light vs. 66.7% without NIR light within 20 min). This work paves the way to rationally design yolk@shell structured nanomotors for diverse applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation

Show Author's information Yi XingSongsong TangXin Du( )Tailin Xu( )Xueji Zhang( )
Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Yolk@shell mesoporous nanoparticles have received close attention due to their controllable structures and integrated functions. However, most yolk@shell nanosystems lack self-propulsion. Herein, yolk@spiky-shell structured carbon@silica nanomotors are fabricated with near-infrared (NIR) light self-thermophoretic propulsion as lipase nanocarriers for fuel-free triglyceride degradation. The light propulsion accelerates the accumulation of nanomotors on the droplet interface, and the efficient lipase loading further facilitates the rapid degradation of tributyrin droplets. By adjusting the yolk and spiky structure, the obtained semi-yolk@spiky-shell structured nanomotors exhibit the highest capacity of lipase (442 mg/g) and the highest light-driven diffusion coefficient (ca. 55% increase under 2 W/cm2 irradiation), thus improving the degradation efficiency of triglyceride (93.1% under NIR light vs. 66.7% without NIR light within 20 min). This work paves the way to rationally design yolk@shell structured nanomotors for diverse applications.

Keywords: yolk@spiky-shell, carbon@silica, nanomotors, self-thermophoresis, triglyceride degradations

References(42)

[1]
M. Guix,; C. C. Mayorga-Martinez,; A. Merkoçi, Nano/micromotors in (Bio) chemical science applications. Chem. Rev. 2014, 114, 6285-6322.
[2]
H. Wang,; M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 2015, 115, 8704-8735.
[3]
Y. F. Mei,; A. A. Solovev,; S. Sanchez,; O. G. Schmidt, Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109-2119.
[4]
M. Burghard, A freight train of nanotubes for cargo transport on the nanoscale. Angew. Chem., Int. Ed. 2008, 47, 8565-8566.
[5]
J. Wang, Cargo-towing synthetic nanomachines: Towards active transport in microchip devices. Lab Chip 2012, 12, 1944-1950.
[6]
K. Kim,; J. H. Guo,; Z. X. Liang,; D. L. Fan, Artificial micro/ nanomachines for bioapplications: Biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 2018, 28, 1705867.
[7]
X. P. Yu,; Y. N. Li,; J. Wu,; H. X. Ju, Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal. Chem. 2014, 86, 4501-4507.
[8]
J. Parmar,; D. Vilela,; K. Villa,; J. Wang,; S. Sánchez, Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 2018, 140, 9317-9331.
[9]
J. Wu,; S. Balasubramanian,; D. Kagan,; K. M. Manesh,; S. Campuzano,; J. Wang, Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 2010, 1, 36.
[10]
W. W. Gao,; B. E. F. De Ávila,; L. F. Zhang,; J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug Deliv. Rev. 2018, 125, 94-101.
[11]
F. Peng,; Y. F. Tu,; D. A. Wilson, Micro/nanomotors towards in vivo application: Cell, tissue and biofluid. Chem. Soc. Rev. 2017, 46, 5289-5310.
[12]
M. Guix,; J. Orozco,; M. García,; W. Gao,; S. Sattayasamitsathit,; A. Merkoçi,; A. Escarpa,; J. Wang, Superhydrophobic alkanethiol- coated microsubmarines for effective removal of oil. ACS Nano 2012, 6, 4445-4451.
[13]
L. Soler,; V. Magdanz,; V. M. Fomin,; S. Sánchez,; O. G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 2013, 7, 9611-9620.
[14]
L. Soler,; S. Sánchez, Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 2014, 6, 7175-7182.
[15]
X. Y. Peng,; F. Gao,; J. X. Zhao,; J. L. Li,; J. Y. Qu,; H. B. Fan, Self-assembly of a graphene oxide/MnFe2O4 motor by coupling shear force with capillarity for removal of toxic heavy metals. J. Mater. Chem. A 2018, 6, 20861-20868.
[16]
K. Villa,; J. Parmar,; D. Vilela,; S. Sánchez, Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals. ACS Appl. Mater. Interfaces 2018, 10, 20478-20486.
[17]
L. Kong,; C. C. Mayorga-Martinez,; J. Guan,; M. Pumera, Fuel-free light-powered TiO2/Pt janus micromotors for enhanced nitroaromatic explosives degradation. ACS Appl. Mater. Interfaces 2018, 10, 22427-22434.
[18]
L. Kong,; A. Ambrosi,; M. Z. M. Nasir,; J. G. Guan,; M. Pumera, Self-propelled 3D-printed “aircraft carrier” of light-powered smart micromachines for large-volume nitroaromatic explosives removal. Adv. Funct. Mater. 2019, 29, 1903872.
[19]
L. Wang,; A. C. Hortelão,; X. Huang,; S. Sánchez, Lipase-powered mesoporous silica nanomotors for triglyceride degradation. Angew. Chem., Int. Ed. 2019, 58, 7992-7996.
[20]
M. Pacheco,; B. Jurado-Sánchez,; A. Escarpa, Visible-light-driven Janus microvehicles in biological media. Angew. Chem., Int. Ed. 2019, 58, 18017-18024.
[21]
T. L. Xu,; W. Gao,; L. P. Xu,; X. J. Zhang,; S. T. Wang, Fuel-free synthetic micro-/nanomachines. Adv. Mater. 2017, 29, 1603250.
[22]
K. Villa,; M. Pumera, Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature. Chem. Soc. Rev. 2019, 48, 4966-4978.
[23]
L. L. Xu,; F. Z. Mou,; H. T. Gong,; M. Luo,; J. G. Guan, Light- driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905-6926.
[24]
J. Z. Wang,; Z. Xiong,; J. Zheng,; X. J. Zhan,; J. Y. Tang, Light-driven micro/nanomotor for promising biomedical tools: Principle, challenge, and prospect. Acc. Chem. Res. 2018, 51, 1957-1965.
[25]
M. J. Xuan,; Z. G. Wu,; J. X. Shao,; L. R. Dai,; T. Y. Si,; Q. He, Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492-6497.
[26]
R. F. Dong,; Y. Hu,; Y. F. Wu,; W. Gao,; B. Y. Ren,; Q. L. Wang,; Y. P. Cai, Visible-light-driven bioi-based janus micromotor in pure water. J. Am. Chem. Soc. 2017, 139, 1722-1725.
[27]
R. J. Archer,; A. J. Parnell,; A. I. Campbell,; J. R. Howse,; S. J. Ebbens, A pickering emulsion route to swimming active janus colloids. Adv. Sci. 2018, 5, 1700528.
[28]
J. L. Moran,; J. D. Posner, Role of solution conductivity in reaction induced charge auto-electrophoresis. Phys. Fluids 2014, 26, 042001.
[29]
M. J. Xuan,; J. X. Shao,; C. Y. Gao,; W. Wang,; L. R. Dai,; Q. He, Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem., Int. Ed. 2018, 57, 12463-12467.
[30]
M. L. Lian,; Z. J. Xue,; X. Z. Qiao,; C. Liu,; S. Zhang,; X. Li,; C. H. Huang,; Q. Song,; W. S. Yang,; X. Chen, et al. Movable hollow nanoparticles as reactive oxygen scavengers. Chem 2019, 5, 2378-2387.
[31]
T. C. Zhao,; A. Elzatahry,; X. M. Li,; D. Y. Zhao, Single-micelle- directed synthesis of mesoporous materials. Nat. Rev. Mater. 2019, 4, 775-791.
[32]
S. N. Wang,; M. C. Zhang,; W. Q. Zhang, Yolk-shell catalyst of single au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal. 2011, 1, 207-211.
[33]
J. Lee,; J. C. Park,; H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523-1528.
[34]
I. Lee,; J. B. Joo,; Y. Yin,; F. Zaera, A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem., Int. Ed. 2011, 50, 10208-10211.
[35]
Z. H. Liu,; Y. L. Zhao,; R. H. He,; W. Luo,; J. S. Meng,; Q. Yu,; D. Y. Zhao,; L. Zhou,; L. Q. Mai, Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299-305.
[36]
M. Zhang,; H. Song,; Y. N. Yang,; X. D. Huang,; Y. Liu,; C. Liu,; C. Z. Yu, Oxidative dissolution of resoles: A versatile approach to intricate nanostructures. Angew. Chem., Int. Ed. 2018, 57, 654-658.
[37]
Y. N. Yang,; S. Bernardi,; H. Song,; J. Zhang,; M. H. Yu,; J. C. Reid,; E. Strounina,; D. J. Searles,; C. Z. Yu, Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: Understanding the composition gradient. Chem. Mater. 2016, 28, 704-707.
[38]
H. Song,; Y. A. Nor,; M. H. Yu,; Y. N. Yang,; J. Zhang,; H. W. Zhang,; C. Xu,; N. Mitter,; C. Z. Yu, Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455-6462.
[39]
H. R. Jiang,; N. Yoshinaga,; M. Sano, Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010, 105, 268302.
[40]
M. J. Xuan,; R. Mestre,; C. Y. Gao,; C. Zhou,; Q. He,; S. Sánchez, Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew. Chem., Int. Ed. 2018, 57, 6838-6842.
[41]
T. C. Li,; S. Kheifets,; D. Medellin,; M. G. Raizen, Measurement of the instantaneous velocity of a brownian particle. Science 2010, 328, 1673-1675.
[42]
G. Dunderdale,; S. Ebbens,; P. Fairclough,; J. Howse, Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 2012, 28, 10997-11006.
Video
12274_2020_3092_MOESM2_ESM.mp4
File
12274_2020_3092_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2020
Revised: 04 September 2020
Accepted: 05 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-19-017B1, 2302015-06500017, FRF-BR-19-003B, and FRF-DB-20-14A), the National Natural Science Foundation of China (Nos. 21501009 and 21804007), and Beijing Municipal Science and Technology Commission (No. z131102002813058).

Return