Journal Home > Volume 13 , Issue 12

Although many emerging new phenomena have been unraveled in two dimensional (2D) materials with long-range spin orderings, the usually low critical temperature in van der Waals (vdW) magnetic material has thus far hindered the related practical applications. Here, we show that ferromagnetism can hold above 300 K in a metallic phase of 1T-CrTe2 down to the ultra-thin limit. It thus makes CrTe2 so far the only known exfoliated ultra-thin vdW magnets with intrinsic long-range magnetic ordering above room temperature. An in-plane room-temperature negative anisotropic magnetoresistance (AMR) was obtained in ultra-thin CrTe2 devices, with a sign change in the AMR at lower temperature, with -0.6% and +5% at 300 and 10 K, respectively. Our findings provide insights into magnetism in ultra-thin CrTe2, expanding the vdW crystals toolbox for future room-temperature spintronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2

Show Author's information Xingdan Sun1,2,§Wanying Li1,2,§Xiao Wang3,4,5,§Qi Sui6,§Tongyao Zhang7,8Zhi Wang1,2Long Liu1,2Da Li1,2Shun Feng1,2,11Siyu Zhong9Hanwen Wang1,2Vincent Bouchiat10Manuel Nunez Regueiro10Nicolas Rougemaille10Johann Coraux10Anike Purbawati10Abdellali Hadj-Azzem10Zhenhua Wang1,2Baojuan Dong7,8Xing Wu9Teng Yang1,2( )Guoqiang Yu3,4,5( )Bingwu Wang6( )Zheng Han1,2,7( )Xiufeng Han3,4,5Zhidong Zhang1,2
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Beijing National Laboratory for Molecular Sciences, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Shanghai Key Laboratory of Multidimensional Information Processing Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000 Grenoble, France
School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

§ Xingdan Sun, Wanying Li, Xiao Wang, and Qi Sui contributed equally to this work.

Abstract

Although many emerging new phenomena have been unraveled in two dimensional (2D) materials with long-range spin orderings, the usually low critical temperature in van der Waals (vdW) magnetic material has thus far hindered the related practical applications. Here, we show that ferromagnetism can hold above 300 K in a metallic phase of 1T-CrTe2 down to the ultra-thin limit. It thus makes CrTe2 so far the only known exfoliated ultra-thin vdW magnets with intrinsic long-range magnetic ordering above room temperature. An in-plane room-temperature negative anisotropic magnetoresistance (AMR) was obtained in ultra-thin CrTe2 devices, with a sign change in the AMR at lower temperature, with -0.6% and +5% at 300 and 10 K, respectively. Our findings provide insights into magnetism in ultra-thin CrTe2, expanding the vdW crystals toolbox for future room-temperature spintronic applications.

Keywords: room temperature ferromagnetism, two dimensional (2D), CrTe2, anisotropic magnetoresistance (AMR)

References(57)

[1]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. McGuire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[2]
C. Gong,; L. Li,; Z. L. Li,; H. W. Ji,; Y., A. Stern,; Y. Xia,; T. Cao,; W. Bao,; C. Z. Wang,; Y. Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265-269.
[3]
Z. Wang,; T. Y. Zhang,; M. Ding,; B. J. Dong,; Y. X. Li,; M. L. Chen,; X. X. Li,; J. Q. Huang,; H. W. Wang,; X. T. Zhao, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554-559.
[4]
S. W. Jiang,; J. Shan,; K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406-410.
[5]
Y. J. Deng,; Y. J. Yu,; Y. C. Song,; J. Z. Zhang,; N. Z. Wang,; Z. Y. Sun,; Y. F. Yi,; Y. Z. Wu,; S. W. Wu,; J. Y. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94-99.
[6]
Z. Y. Sun,; Y. F. Yi,; T. C. Song,; G. Clark,; B. Huang,; Y. W. Shan,; S. Wu,; D. Huang,; C. L. Gao,; Z. H. Chen, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497-501.
[7]
W. J. Chen,; Z. Y. Sun,; Z. J. Wang,; L. H. Gu,; X. D. Xu,; S. W. Wu,; C. L. Gao, Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983-987.
[8]
X. X. Li,; B. J. Dong,; X. D. Sun,; H. W. Wang,; T. Yang,; G. Q. Yu,; Z. Y. Han, Perspectives on exfoliated two-dimensional spintronics. J. Semicond. 2019, 40, 081508.
[9]
T. C. Song,; X. H. Cai,; M. W. Y. Tu,; X. O. Zhang,; B. Huang,; N. P. Wilson,; K. L. Seyler,; L. Zhu,; T. Taniguchi,; K. Watanabe, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214-1218.
[10]
X. Wang,; J. Tang,; X. X. Xia,; C. L. He,; J. W. Zhang,; Y. Z. Liu,; C. H. Wan,; C. Fang,; C. Y. Guo,; W. L. Yang, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.
[11]
Q. Li,; M. M. Yang,; C. Gong,; R. V. Chopdekar,; A. T. N’Diaye,; J. Turner,; G. Chen,; A. Scholl,; P. Shafer,; E. Arenholz, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974-5980.
[12]
C. Wang,; X. Y. Zhou,; L. W. Zhou,; N. H. Tong,; Z. Y. Lu,; W. Ji, A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293-300.
[13]
C. X. Huang,; J. S. Feng,; J. Zhou,; H. J. Xiang,; K. M. Deng,; E. J. Kan, Ultra-high-temperature ferromagnetism in intrinsic tetrahedral semiconductors. J. Am. Chem. Soc. 2019, 141, 12413-12418.
[14]
J. Y. You,; Z. Zhang,; B. Gu,; G. Su, Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous Hall effect. Phys. Rev. Appl. 2019, 12, 024063.
[15]
D. J. O’Hara,; T. C. Zhu,; A. H. Trout,; A. S. Ahmed,; Y. K. Luo,; C. H. Lee,; M. R. Brenner,; S. Rajan,; J. A. Gupta,; D. W. McComb, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125-3131.
[16]
J. Li,; B. Zhao,; P. Chen,; R. X. Wu,; B. Li,; Q. L. Xia,; G. H. Guo,; J. Luo,; K. T. Zang,; Z. W. Zhang, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
[17]
W. Yu,; J. Li,; T. S. Herng,; Z. S. Wang,; X. X. Zhao,; X. Chi,; W. Fu,; I. Abdelwahab,; J. Zhou,; J. D. Dan, et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.
[18]
M. Bonilla,; S. Kolekar,; Y. J. Ma,; H. C. Diaz,; V. Kalappattil,; R. Das,; T. Eggers,; H. R. Gutierrez,; M. H. Phan,; M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[19]
S. Onari,; T. Arai, Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe2. J. Phys. Soc. Jpn. 1979, 46, 184-188.
[20]
R. J. Pollard,; V. H. McCann,; J. B. Ward, Magnetic structures of α-MnS and MnSe from 57Fe Mossbauer spectroscopy. J. Phys. C: Solid State Phys. 1983, 16, 345-353.
[21]
C. F. van Bruggen,; C. Haas, Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 1976, 20, 251-254.
[22]
M. Bayard,; M. J. Sienko, Anomalous electrical and magnetic properties of vanadium diselenide. J. Solid State Chem. 1976, 19, 325-329.
[23]
H. T. Liu,; L. H. Bao,; Z. Zhou,; B. Y. Che,; R. Z. Zhang,; C. Bian,; R. S. Ma,; L. M. Wu,; H. F. Yang,; J. J. Li, et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019, 19, 4551-4559.
[24]
W. Jolie,; T. Knispel,; N. Ehlen,; K. Nikonov,; C. Busse,; A. Grüneis,; T. Michely, Charge density wave phase of VSe2 revisited. Phys. Rev. B 2019, 99, 115417.
[25]
P. Chen,; W. W. Pai,; Y. H. Chan,; V. Madhavan,; M. Y. Chou,; S. K. Mo,; A. V. Fedorov,; T. C. Chiang, Unique gap structure and symmetry of the charge density wave in single-layer VSe2. Phys. Rev. Lett. 2018, 121, 196402.
[26]
J. G. Feng,; D. Biswas,; A. Rajan,; M. D. Watson,; F. Mazzola,; O. J. Clark,; K. Underwood,; I. Marković,; M. McLaren,; A. Hunter, et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493-4499.
[27]
P. M. Coelho,; K. Lasek,; K. Nguyen Cong,; J. F. Li,; W. Niu,; W. Q. Liu,; I. I. Oleynik,; M. Batzill, Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987-4993.
[28]
P. K. J. Wong,; W. Zhang,; J. Zhou,; F. Bussolotti,; X. M. Yin,; L. Zhang,; A. T. N’Diaye,; S. A. Morton,; W. Chen,; J. Goh, et al. Metallic 1T phase, 3d1 electronic configuration and charge density wave order in molecular beam epitaxy grown monolayer vanadium ditelluride. ACS Nano 2019, 13, 12894-12900.
[29]
P. K. J. Wong,; W. Zhang,; F. Bussolotti,; X. M. Yin,; T. S. Herng,; L. Zhang,; Y. L. Huang,; G. Vinai,; S. Krishnamurthi,; D. W. Bukhvalov, et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.
[30]
P. M. Coelho,; K. Nguyen Cong,; M. Bonilla,; S. Kolekar,; M. H. Phan,; J. Avila,; M. C. Asensio,; I. I. Oleynik,; M. Batzill, Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089-14096.
[31]
G. Duvjir,; B. K. Choi,; I. Jang,; S. Ulstrup,; S. Kang,; T. Thi Ly,; S. Kim,; Y. H. Choi,; C. Jozwiak,; A. Bostwick, et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 2018, 18, 5432-5438.
[32]
W. Zhang,; L. Zhang,; P. K. J. Wong,; J. R. Yuan,; G. Vinai,; P. Torelli,; G. van der Laan,; Y. P. Feng,; A. T. S. Wee, Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano 2019, 13, 8997-9004.
[33]
G. Vinai,; C. Bigi,; A. Rajan,; M. D. Watson,; T. L. Lee,; F. Mazzola,; S. Modesti,; S. Barua,; M. C. Hatnean,; G. Balakrishnan, et al. Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures. Phys. Rev. B 2020, 101, 035404.
[34]
A. F. May,; D. Ovchinnikov,; Q. Zheng,; R. Hermann,; S. Calder,; B. Huang,; Z. Y. Fei,; Y. H. Liu,; X. D. Xu,; M. A. McGuire, Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436-4442.
[35]
D. C. Freitas,; R. Weht,; A. Sulpice,; G. Remenyi,; P. Strobel,; F. Gay,; J. Marcus,; M. Núñez-Regueiro, Ferromagnetism in layered metastable 1T-CrTe2. J. Phys.: Condens. Matter 2015, 27, 176002.
[36]
K Persson,. Materials Data on CrTe2 (SG: 164) by Materials Project. 2016[Online]. https://www.osti.gov/servlets/purl/1284084.
[37]
A. Purbawati,; J. Coraux,; J. Vogel,; A. Hadj-Azzem,; N. Wu,; N. Bendiab,; D. Jegouso,; J. Renard,; L. Marty,; V. Bouchiat, et al. In-plane magnetic domains and Néel-like domain walls in thin flakes of the room temperature CrTe2 van der Waals ferromagnet. ACS Appl. Mater. Interfaces 2020, 12, 30702-30710.
[38]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[39]
S. Blundell, Magnetism in Condensed Matter; Oxford University Press: Oxford, 2001.
[40]
P. Mohn, Magnetism in the Solid State; Springer-Verlag: Berlin, 2003.
[41]
N. D. Mermin,; H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133-1136.
[42]
H. E. Stanley,; T. A. Kaplan, Possibility of a phase transition for the two-dimensional Heisenberg model. Phys. Rev. Lett. 1966, 17, 913-915.
[43]
K. Sugawara,; Y. Nakata,; K. Fujii,; K. Nakayama,; S. Souma,; T. Takahashi,; T. Sato, Monolayer VTe2: Incommensurate Fermi surface nesting and suppression of charge density waves. Phys. Rev. B 2019, 99, 241404.
[44]
F. Takata,; K. Kabara,; K. Ito,; M. Tsunoda,; T. Suemasu, Negative anisotropic magnetoresistance resulting from minority spin transport in NixFe4-xN (x = 1 and 3) epitaxial films. J. Appl. Phys. 2017, 121, 023903.
[45]
M. Tsunoda,; Y. Komasaki,; S. Kokado,; S. Isogami,; C. C. Chen,; M. Takahashi, Negative anisotropic magnetoresistance in Fe4N film. Appl. Phys. Exp. 2009, 2, 083001.
[46]
D. M. Zhang,; A. Richardella,; D. W. Rench,; S. Y. Xu,; A. Kandala,; T. C. Flanagan,; H. Beidenkopf,; A. L. Yeats,; B. B. Buckley,; P. V. Klimov, et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 2012, 86, 205127.
[47]
T. McGuire,; J. Aboaf,; E. Klokholm, Negative anisotropic magnetoresistance in 3d metals and alloys containing iridium. IEEE Trans. Mag. 1984, 20, 972-974.
[48]
Y. R. You,; Y. Y. Gong,; H. Li,; Z. F. Li,; M. M. Zhu,; J. X. Tang,; E. K. Liu,; Y. Yao,; G. Z. Xu,; F. Xu, et al. Angular dependence of the topological Hall effect in the uniaxial van der Waals ferromagnet Fe3GeTe2. Phys. Rev. B 2019, 100, 134441.
[49]
H. C. Van Elst, The anisotropy in the magneto-resistance of some nickel alloys. Physica 1959, 25, 708-720.
[50]
R. M. Bozorth, Magnetoresistance and domain theory of iron-nickel alloys. Phys. Rev. 1946, 70, 923-932.
[51]
S. Kokado,; M. Tsunoda,; K. Harigaya,; A. Sakuma, Anisotropic magnetoresistance effects in Fe, Co, Ni, Fe4N, and half-metallic ferromagnet: A systematic analysis. J. Phys. Soc. Jpn. 2012, 81, 024705.
[52]
F. Hellman,; A. Hoffmann,; Y. Tserkovnyak,; G. S. Beach,; E. E. Fullerton,; C. Leighton,; A. H. MacDonald,; D. C. Ralph,; D. A. Arena,; H. A. Dürr, et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.
[53]
A. A. Awad,; P. Dürrenfeld,; A. Houshang,; M. Dvornik,; E. Iacocca,; R. K. Dumas,; J. Åkerman, Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 2017, 13, 292-299.
[54]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[55]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[56]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[57]
H. J. Monkhorst,; J. D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
File
12274_2020_3021_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 June 2020
Revised: 04 July 2020
Accepted: 29 July 2020
Published: 29 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is supported by the National Key R&D Program of China (Nos. 2019YFA0307800, 2017YFA0206302, and 2017YFA0206200) and the National Natural Science Foundation of China (NSFC) (Nos. 11974357, U1932151, and 51627801). G. Q. Y. and X. F. H. thank the financial supports from the National Natural Science Foundation of China (NSFC) (No. 11874409). This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 61574060, and 8206300210). T. Y. acknowledges supports from the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (No. U1537204). Z. H. acknowledges the support from the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF201816). The authors appreciate the help of Dr. Binbin Jiang in obtaining the HAADF-STEM images.

Return