AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries

Zhiliang Liu1,2Xiangxi Wang1Zhuoyan Wu3Sungjin Yang2Shaolei Yang2Shunpeng Chen2Xinteng Wu1Xinghua Chang4Piaoping Yang1( )Jie Zheng2( )Xingguo Li2( )
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, China
Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
Key Laboratory for Mineral Materials and Application of Hunan Province, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

Nanostructured metal phosphides are very attractive materials in energy storage and conversion, but their applications are severely limited by complicated preparation steps, harsh conditions and large excess of highly toxic phosphorus source. Here we develop a highly efficient one-step method to synthesize Sn4P3 nanostructure based on simultaneous reduction of SnCl4 and PCl3 on mechanically activated Na surface and in situ phosphorization. The low-toxic PCl3 displays a very high phosphorizing efficiency (100%). Furthermore, this simple method is powerful to control phosphide size. Ultrafine Sn4P3 nanocrystals (< 5 nm) supported on carbon sheets (Sn4P3/C) are obtained, which is due to the unique bottom-up surface-limited reaction. As the anode material for sodium/lithium ion batteries (SIBs/LIBs), the Sn4P3/C shows profound sodiation/lithiation extents, good phase-conversion reversibility, excellent rate performance and long cycling stability, retaining high capacities of 420 mAh/g for SIBs and 760 mAh/g for LIBs even after 400 cycles at 1.0 A/g. Combining simple and efficient preparation, low-toxic and high-efficiency phosphorus source and good control of nanosize, this method is very promising for low-cost and scalable preparation of high-performance Sn4P3 anode.

Electronic Supplementary Material

Download File(s)
12274_2020_2987_MOESM1_ESM.pdf (5.6 MB)

References

[1]
Guo, H. N.; Chen, C. C.; Chen, K.; Cai, H. C.; Chang, X. Y.; Liu, S.; Li, W. Q.; Wang, Y. J.; Wang, C. Y. High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. J. Mater. Chem. A 2017, 5, 22316-22324.
[2]
Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549-15552.
[3]
Park, G. D.; Lee, J. K.; Kang, Y. C. Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 2020, 389, 124350.
[4]
Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Cheng, F. Y.; Weiss, P. S.; Chen, J. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539-8547.
[5]
Wu, F. X.; Zhao, C. L.; Chen, S. Q.; Lu, Y. X.; Hou, Y. L.; Hu, Y. S.; Maier, J.; Yu, Y. Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960-973.
[6]
Xu, X. J.; Liu, J.; Liu, Z. B.; Wang, Z. S.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance li-ion batteries. Small 2018, 14, 1800793.
[7]
Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Xiang, J. Y.; Mai, Y. J.; Zhang, J.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D.; Mao, S. X. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Adv. Funct. Mater. 2012, 22, 3927-3935.
[8]
Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531-3538.
[9]
Ding, Y. J.; Li, Z. F.; Timofeeva, E. V.; Segre, C. U. In situ EXAFS- derived mechanism of highly reversible tin phosphide/graphite composite anode for li-ion batteries. Adv. Energy Mater. 2018, 8, 1702134.
[10]
Liu, Q.; Ye, J. J.; Chen, Z. H.; Hao, Q.; Xu, C. X.; Hou, J. G. Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. J. Colloid Interface Sci. 2019, 537, 588-596.
[11]
Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860-1866.
[12]
Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455-1459.
[13]
Fan, X. L.; Gao, T.; Luo, C.; Wang, F.; Hu, J. K.; Wang, C. S. Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy 2017, 38, 350-357.
[14]
Xu, X. J.; Liu, J.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Self-supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long-life lithium-ion batteries. Chem.—Eur. J. 2017, 23, 5198-5204.
[15]
Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.
[16]
Li, J. J.; Shi, L.; Gao, J. Y.; Zhang, G. Q. General one-pot synthesis of transition-metal phosphide/nitrogen-doped carbon hybrid nanosheets as ultrastable anodes for sodium-ion batteries. Chem.-Eur. J. 2018, 24, 1253-1258.
[17]
Honjo, M.; Marumoto, R. Production of ribonucleoside 5'-phosphate. U.S. Patent 3,346,562, Oct 10, 1967.
[18]
Karkozova, G. F.; Lyubetskii, S. G.; Zyuzina, L. I.; Gol'denberg, A. L.; Sirota, A. G. Phosphonation and surface coloring of polyolefins. Plast. Massy 1970, 33-36.
[19]
Kobayashi, J.; Ishikawa, A.; Ishino, Y.; Ono, T.; Ito, T.; Mihara, M. Preparation of 10-halo-10H-9-oxa-10-phosphaphenanthrenes from 2-phenylphenols. J. P. Patent 2007223934A, Sep 6, 2007.
[20]
Zhang, J. L.; Wang, W. H.; Li, B. H. Effect of particle size on the sodium storage performance of Sn4P3. J. Alloys Compd. 2019, 771, 204-208.
[21]
Li, W. J.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Sn4+xP3 amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long Life, and superior rate capability. Adv. Mater. 2014, 26, 4037-4042.
[22]
Lu, Y. Y.; Zhou, P. F.; Lei, K. X.; Zhao, Q.; Tao, Z. L.; Chen, J. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601973.
[23]
Park, G. D.; Yang, S. J.; Lee, J. H.; Kang, Y. C. Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions. Small 2019, 15, 1905289.
[24]
Li, G. L.; Wu, X. Q.; Guo, H.; Guo, Y. R.; Chen, H.; Wu, Y.; Zheng, J.; Li, X. G. Plasma transforming Ni(OH)2 nanosheets into porous nickel nitride sheets for alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 5951-5957.
[25]
Liu, Z. L.; Yang, S. J.; Sun, B. X.; Chang, X. H.; Zheng, J.; Li, X. G. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 10187-10191.
[26]
Deng, Q. L.; Chen, F.; Liu, S.; Bayaguud, A.; Feng, Y. Z.; Zhang, Z. B.; Fu, Y. P.; Yu, Y.; Zhu, C. B. Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 2020, 30, 1908665.
[27]
Guo, Q.; Ru, Q.; Liu, Y.; Yan, H. L.; Wang, B.; Hou, X. H. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem 2018, 5, 2150-2156.
[28]
Li, B.; Xue, H. G.; Pang, H.; Xu, Q. Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. Sci. China Chem. 2020, 63, 475-482.
[29]
Jiang, Y. Q.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv. Sci. 2020, 7, 1902795.
[30]
Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-Ion batteries. Nano Lett. 2014, 14, 1865-1869.
[31]
Lan, D. N.; Wang, W. H.; Shi, L.; Huang, Y.; Hu, L. B.; Li, Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries. J. Mater. Chem. A 2017, 5, 5791-5796.
[32]
Gómez-Cámer, J. L.; Acebedo, B.; Ortiz-Vitoriano, N.; Monterrubio, I.; Galcerán, M.; Rojo, T. Unravelling the impact of electrolyte nature on Sn4P3/C negative electrodes for Na-ion batteries. J. Mater. Chem. A 2019, 7, 18434-18441.
[33]
Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.
[34]
Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534-1547.
[35]
Liu, Z. L.; Yang, S. L.; Sun, B. X.; Yang, P. P.; Zheng, J.; Li, X. G. Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew. Chem., Int. Ed. 2020, 59, 1975-1979.
[36]
Kim, Y. J.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-Ion batteries. Adv. Mater. 2014, 26, 4139-4144.
[37]
Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.
[38]
Zhang, K.; Park, M.; Zhang, J.; Lee, G. H.; Shin, J.; Kang, Y. M. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 2017, 10, 4337-4350.
[39]
Ma, C. R.; Fu, Z. G.; Deng, C. J.; Liao, X. Z.; He, Y. S.; Ma, Z. F.; Xiong, H. Carbon-coated FeP nanoparticles anchored on carbon nanotube networks as an anode for long-life sodium-ion storage. Chem. Commun. 2018, 54, 11348-11351.
[40]
Pan, E. Z.; Jin, Y. H.; Zhao, C. C.; Jia, M.; Chang, Q. Q.; Jia, M. Q.; Wang, L.; He, X. M. Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl. Energy Mater. 2019, 2, 1756-1764.
[41]
Choi, J.; Kim, W. S.; Kim, K. H.; Hong, S. H. Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J. Mater. Chem. A 2018, 6, 17437-17443.
[42]
Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151, A933-A937.
[43]
Mao, O.; Dunlap, R. A.; Dahn, J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: I. The Sn2Fe-C system. J. Electrochem. Soc. 1999, 146, 405-413.
[44]
Yoon, S.; Lee, J.-M.; Kim, H.; Im, D.; Doo, S.-G.; Sohn, H.-J. An Sn-Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries. Electrochim. Acta 2009, 54, 2699-2705.
[45]
Zhang, Z. Y.; Hu, T. S.; Sun, Q. M.; Chen, Y.; Yang, Q. X.; Li, Y. M. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power Sources 2020, 453, 227908.
[46]
Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
[47]
Feng, X. Y.; Tang, M. X.; O'Neill, S.; Hu, Y. Y. In situ synthesis and in operando NMR studies of a high-performance Ni5P4-nanosheet anode. J. Mater. Chem. A 2018, 6, 22240-22247.
[48]
Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.
[49]
Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.
[50]
Jiang, Y.; Wang, Y. Y.; Jiang, J. L.; Liu, S.; Li, W. R.; Huang, S. S.; Chen, Z. W.; Zhao, B. In-situ solvothermal phosphorization from nano-sized tetragonal-Sn to rhombohedral-Sn4P3 embedded in hollow graphene sphere with high capacity and stability. Electrochim. Acta 2019, 312, 263-271.
[51]
Zhang, M.; Wang, H. J.; Feng, J.; Chai, Y. Q.; Luo, X. L.; Yuan, R.; Yang, X. Controllable synthesis of 3D nitrogen-doped carbon networks supported SnxPy nanoparticles as high performance anode for lithium ion batteries. Appl. Surf. Sci. 2019, 484, 899-905.
[52]
Zhu, K. J.; Liu, J.; Li, S. T.; Liu, L. L.; Yang, L. Y.; Liu, S. L.; Wang, H.; Xie, T. Ultrafine cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for Lithium Ion Batteries. Adv. Mater. Interfaces 2017, 4, 1700377.
[53]
Chang, X. H.; Sun, B. X.; Xie, Z. W.; Wang, Z. Y.; Zheng, J.; Li, X. G. Structure robustness and Li+ diffusion kinetics in amorphous and graphitized carbon based Sn/C composites for lithium-ion batteries. J. Electroanal. Chem. 2019, 854, 113529.
[54]
Zhang, B. P.; Xia, G. L.; Chen, W.; Gu, Q. F.; Sun, D. L.; Yu, X. B. Controlled-size hollow magnesium sulfide nanocrystals anchored on graphene for advanced lithium storage. ACS Nano 2018, 12, 12741-12750.
[55]
Lu, Y.; Lu, Y. Y.; Niu, Z. Q.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469.
[56]
Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium- ion storage. Adv. Energy Mater. 2020, 10, 2000741.
[57]
Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391-5399.
[58]
Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213-220.
Nano Research
Pages 3157-3164
Cite this article:
Liu Z, Wang X, Wu Z, et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Research, 2020, 13(11): 3157-3164. https://doi.org/10.1007/s12274-020-2987-2
Topics:

777

Views

42

Crossref

N/A

Web of Science

44

Scopus

6

CSCD

Altmetrics

Received: 27 April 2020
Revised: 24 June 2020
Accepted: 14 July 2020
Published: 14 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return