Journal Home > Volume 13 , Issue 11

A three-dimensional flower-like NiCo2S4 formed by two-dimensional nanosheets is synthesized by a facile hydrothermal method and utilized as the anode for sodium-ion batteries. Studies have shown that materials can achieve the best performance under the ether-based electrolyte system with voltage ranging from 0.3 to 3 V, which could effectively avoid the dissolution of polysulfides and over-discharge of the material. Here, sodium storage mechanism and charge compensation behaviors of this ternary metal sulfide are comprehensively investigated by ex situ X-ray diffraction. Moreover, ex situ Raman spectra, ex situ X-ray photoelectron spectroscopy and transmission electron microscopy measurements are used to related tests for the first time. Additionally, quantitative kinetic analysis unravels that sodium storage partially depends on the pseudocapacitance mechanism, resulting in good specific capacity and excellent rate performance. The initial discharge capacity is as high as 748 mAh·g-1 at a current density of 0.1 A·g-1 with the initial coulomb efficiency of 94%, and the capacity can still maintain at 580 mAh·g-1 with the Coulomb efficiency close to 100% after following 50 cycles. Moreover, by the long cycle test at a high current density of 2 A·g-1, the capacity can still reach at 376 mAh·g-1 after over 500 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries

Show Author's information Yongqiang Miao1Xiaosen Zhao1Xin Wang1Chenhui Ma1Lu Cheng1Gang Chen1Huijuan Yue2( )Lei Wang3Dong Zhang1( )
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun 130012, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of Eco-Chemical Engineering (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

A three-dimensional flower-like NiCo2S4 formed by two-dimensional nanosheets is synthesized by a facile hydrothermal method and utilized as the anode for sodium-ion batteries. Studies have shown that materials can achieve the best performance under the ether-based electrolyte system with voltage ranging from 0.3 to 3 V, which could effectively avoid the dissolution of polysulfides and over-discharge of the material. Here, sodium storage mechanism and charge compensation behaviors of this ternary metal sulfide are comprehensively investigated by ex situ X-ray diffraction. Moreover, ex situ Raman spectra, ex situ X-ray photoelectron spectroscopy and transmission electron microscopy measurements are used to related tests for the first time. Additionally, quantitative kinetic analysis unravels that sodium storage partially depends on the pseudocapacitance mechanism, resulting in good specific capacity and excellent rate performance. The initial discharge capacity is as high as 748 mAh·g-1 at a current density of 0.1 A·g-1 with the initial coulomb efficiency of 94%, and the capacity can still maintain at 580 mAh·g-1 with the Coulomb efficiency close to 100% after following 50 cycles. Moreover, by the long cycle test at a high current density of 2 A·g-1, the capacity can still reach at 376 mAh·g-1 after over 500 cycles.

Keywords: sodium-ion batteries, anode materials, sodium storage mechanism, pseudocapacitance, NiCo2S4

References(49)

[1]
Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
[2]
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium- ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102-120.
[3]
Ortiz-Vitoriano, N.; Drewett, N. E.; Gonzalo, E.; Rojo, T. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 2017, 10, 1051-1074.
[4]
You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1701785.
[5]
Jache, B.; Adelhelm, P. Use of Graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169-10173.
[6]
Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130-151.
[7]
Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66-95.
[8]
Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658-12667.
[9]
Zhao, F.; Gong, Q.; Traynor, B.; Zhang, D.; Li, J.; Ye, H.; Chen, F.; Han, N.; Wang, Y.; Sun, X.; et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162-3170.
[10]
Li, H.; Wang, Y. H.; Jiang, J. L.; Zhang, Y. Y.; Peng, Y. Y.; Zhao, J. B. CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim. Acta 2017, 247, 851-859.
[11]
Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 2011, 158, A1067-A1070.
[12]
Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889-9924.
[13]
Bhattacharjya, D.; Sinhamahapatra, A.; Ko, J. J.; Yu, J. S. High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun. 2015, 51, 13350-13353.
[14]
Wang, J. G.; Jin, D. D.; Zhou, R.; Shen, C.; Xie, K. Y.; Wei, B. Q. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100-106.
[15]
Zou, R. J.; Zhang, Z. Y.; Yuen, M. F.; Sun, M. L.; Hu, J. Q.; Lee, C. S.; Zhang, W. J. Three-dimensional-networked NiCo2S4 nanosheet array/ carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 2015, 7, e195.
[16]
Pu, J.; Cui, F. L.; Chu, S. B.; Wang, T. T.; Sheng, E. H.; Wang, Z. H. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustainable Chem. Eng. 2014, 2, 809-815.
[17]
Chen, H. C.; Jiang, J. J.; Zhang, L.; Wan, H. Z.; Qi, T.; Xia, D. D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879-8883.
[18]
Xiao, J. W.; Wan, L.; Yang, S. H.; Xiao, F.; Wang, S. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2014, 14, 831-838.
[19]
Shadike, Z.; Cao, M. H.; Ding, F.; Sang, L.; Fu, Z. W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486-10489.
[20]
Zhu, Y. J.; Suo, L.; Gao, T.; Fan, X. L.; Han, F. D.; Wang, C. S. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochem. Commun. 2015, 54, 18-22.
[21]
Yu, D. X.; Pang, Q.; Gao, Y.; Wei, Y. J.; Wang, C. Z.; Chen, G.; Du, F. Hierarchical flower-like VS2 nanosheets-A high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018, 11, 1-7.
[22]
Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281-289.
[23]
Jannesari, H.; Emami, M. D.; Ziegler, C. Effect of electrolyte transport properties and variations in the morphological parameters on the variation of side reaction rate across the anode electrode and the aging of lithium ion batteries. J. Power Sources 2011, 196, 9654-9664.
[24]
Yuan, D. X.; Huang, G.; Yin, D. M.; Wang, X. X.; Wang, C. L.; Wang, L. M. Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 2017, 9, 18178-18186.
[25]
Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.
[26]
Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.
[27]
Lu, C.; Li, Z. Z.; Yu, L. H.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three- dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614-4626.
[28]
Zhu, C. Y.; Xu, F.; Min, H. H.; Huang, Y.; Xia, W. W.; Wang, Y. T.; Xu, Q. Y.; Gao, P.; Sun, L. T. Identifying the conversion mechanism of NiCo2O4 during sodiation-desodiation cycling by in situ TEM. Adv. Funct. Mater. 2017, 27, 1606163.
[29]
Zhang, Z. W.; Li, Z. Q.; Yin, L. W. Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries. New J. Chem. 2018, 42, 1467-1476.
[30]
Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051-3058.
[31]
Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/ reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359-1368.
[32]
Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS Quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.
[33]
Luo, P.; Zhang, H. J.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C. H.; Hu, N.; Wang, Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 2017, 9, 2500-2508.
[34]
Li, H. B.; Chai, L. L.; Wang, X. Q.; Wu, X. Y.; Xi, G. C.; Liu, Y. K.; Qian, Y. T. Hydrothermal growth and morphology modification of β-NiS three-dimensional flowerlike architectures. Cryst. Growth Des. 2007, 7, 1918-1922.
[35]
Bishop, D. W.; Thomas, P. S.; Ray, A. S. Raman spectra of nickel (II) sulfide. Mater. Res. Bull. 1998, 33, 1303-1306.
[36]
Zhang, Y. F.; Zuo, L. Z.; Zhang, L. S.; Yan, J. J.; Lu, H. Y.; Fan, W.; Liu, T. X. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016, 9, 2747-2759.
[37]
Zhang, D.; Sun, W. P.; Zhang, Y.; Dou, Y. H.; Jiang, Y. Z.; Dou, S. X. Engineering hierarchical hollow nickel sulfide spheres for high- performance sodium storage. Adv. Funct. Mater. 2016, 26, 7479-7485.
[38]
Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259-2267.
[39]
Dai, K.; Li, D. P.; Lu, L. H.; Liu, Q.; Lv, J. L.; Zhu, G. P. Facile synthesis of a reduced graphene oxide/cobalt sulfide hybrid and its electrochemical capacitance performance. RSC Adv. 2014, 4, 29216-29222.
[40]
Mo, Y. D.; Ru, Q.; Chen, J. F.; Song, X.; Guo, L. Y.; Hu, S. J.; Peng, S. M. Three-dimensional NiCo2O4 nanowire arrays: Preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J. Mater. Chem. A 2015, 3, 19765-19773.
[41]
Jin, R. C.; Liu, G.; Liu, C. P.; Sun, L. High electrochemical performances of hierarchical hydrangea macrophylla like NiCo2O4 and NiCo2S4 as anode materials for Li-ion batteries. Mater. Res. Bull. 2016, 80, 309-315.
[42]
Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876-15887.
[43]
Cui, J.; Yao, S. S.; Kim, J. K. Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 2017, 7, 64-114.
[44]
Wang, M. R.; Lai, Y. Q.; Fang, J.; Qin, F. R.; Zhang, Z. A.; Li, J.; Zhang, K. Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catal. Sci. Technol. 2016, 6, 434-437.
[45]
Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Liu, S. J.; Mai, L. Q. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 2017, 35, 396-404.
[46]
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-51.
[47]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[48]
Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 2017, 7, 1601283.
[49]
Cook, J. B.; Kim, H. S.; Yan, Y.; Ko, J. S.; Robbennolt, S.; Dunn, B.; Tolbert, S. H. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 2016, 6, 1501937.
File
12274_2020_2969_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2019
Revised: 26 June 2020
Accepted: 02 July 2020
Published: 04 August 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by funding from "973" project (No. 2015CB251103), the National Natural Science Foundation of China (No. 21771086), S&T Development Program of Jilin Province (Nos. 20160101320JC and 20180101293JC), and Jilin Provincial Department of Education "13th Five-Year" scientific research project (No. JJKH20180116KJ).

Return