Journal Home > Volume 13 , Issue 9

Displays play an extremely important role in modern information society, which creates a never-ending demand for the new and better products and technologies. The latest requirements for novel display technologies focus on high resolution and high color gamut. Among emerging technologies that include organic light-emitting diode (OLED), micro light-emitting diode (micro-LED), quantum dot light-emitting diode (QLED), laser display, holographic display and others, QLED is promising owing to its intrinsic high color gamut and the possibility to achieve high resolution with photolithography approach. However, previously demonstrated photolithography techniques suffer from reduced device performance and color impurities in subpixels from the process. In this study, we demonstrated a sacrificial layer assisted patterning (SLAP) approach, which can be applied in conjunction with photolithography to fabricate high-resolution, full-color quantum dot (QD) patterns. In this approach, the negative photoresist (PR) and sacrificial layer (SL) were utilized to determine the pixels for QD deposition, while at the same time the SL helps protect the QD layer and keep it intact (named PR-SL approach). To prove this method’s viability for QLED display manufacture, a 500-ppi, full-color passive matrix (PM)-QLED prototype was fabricated via this process. Results show that there were no color impurities in the subpixels, and the PM-QLED has a high color gamut of 114% National Television Standards Committee (NTSC). To the best of our knowledge, this is the first full-color QLED prototype with such a high resolution. We anticipate that this innovative patterning technique will open a new horizon for future display technologies and may lead to a disruptive and innovative change in display industry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach

Show Author's information Wenhai Mei1,§Zhenqi Zhang1,§Aidi Zhang1Dong Li1Xiaoyuan Zhang1Haowei Wang1Zhuo Chen1( )Yanzhao Li1( )Xinguo Li1,2( )Xiaoguang Xu1( )
BOE Technology Group Co., Ltd., Beijing 100176, China
School of Software & Microelectronics Department, Peking University, Beijing 102600, China

§ Wenhai Mei and Zhenqi Zhang contributed equally to this work.

Abstract

Displays play an extremely important role in modern information society, which creates a never-ending demand for the new and better products and technologies. The latest requirements for novel display technologies focus on high resolution and high color gamut. Among emerging technologies that include organic light-emitting diode (OLED), micro light-emitting diode (micro-LED), quantum dot light-emitting diode (QLED), laser display, holographic display and others, QLED is promising owing to its intrinsic high color gamut and the possibility to achieve high resolution with photolithography approach. However, previously demonstrated photolithography techniques suffer from reduced device performance and color impurities in subpixels from the process. In this study, we demonstrated a sacrificial layer assisted patterning (SLAP) approach, which can be applied in conjunction with photolithography to fabricate high-resolution, full-color quantum dot (QD) patterns. In this approach, the negative photoresist (PR) and sacrificial layer (SL) were utilized to determine the pixels for QD deposition, while at the same time the SL helps protect the QD layer and keep it intact (named PR-SL approach). To prove this method’s viability for QLED display manufacture, a 500-ppi, full-color passive matrix (PM)-QLED prototype was fabricated via this process. Results show that there were no color impurities in the subpixels, and the PM-QLED has a high color gamut of 114% National Television Standards Committee (NTSC). To the best of our knowledge, this is the first full-color QLED prototype with such a high resolution. We anticipate that this innovative patterning technique will open a new horizon for future display technologies and may lead to a disruptive and innovative change in display industry.

Keywords: quantum dots, quantum dot light-emitting diodes, photolithography, high-resolution, sacrificial layer assisted patterning

References(61)

[1]
Salehi, A.; Fu, X. Y.; Shin, D. H.; So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 2019, 29, 1808803.
[2]
Wei, Q.; Fei, N. N.; Islam, A.; Lei, T.; Hong, L.; Peng, R. X.; Fan, X.; Chen, L.; Gao, P. Q.; Ge, Z. Y. Small-molecule emitters with high quantum efficiency: Mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater. 2018, 6, 1800512.
[3]
Wong, W. Y.; Ho, C. L. Functional metallophosphors for effective charge carrier injection/transport: New robust OLED materials with emerging applications. J. Mater. Chem. 2009, 19, 4457-4482.
[4]
Wu, T. Z.; Sher, C. W.; Lin, Y.; Lee, C. F.; Liang, S. J.; Lu, Y. J.; Huang Chen, S. W.; Guo, W. J.; Kuo, H. C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557.
[5]
Huang, Y. G.; Tan, G. J.; Gou, F. W.; Li, M. C.; Lee, S. L.; Wu, S. T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387-401.
[6]
Rogach, A. L.; Gaponik, N.; Lupton, J. M.; Bertoni, C.; Gallardo, D. E.; Dunn, S.; Li Pira, N.; Paderi, M.; Repetto, P.; Romanov, S. G. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 6538-6549.
[7]
Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513-10622.
[8]
Erdem, T.; Demir, H. V. Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics 2013, 2, 57-81.
[9]
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13-23.
[10]
Yuan, Y.; Bi, Y.; Sun, M. Y.; Wang, D. Z.; Wang, D. D.; Gao, W. N.; Zhang, S. Speckle evaluation in laser display: From speckle contrast to speckle influence degree. Opt. Commun. 2020, 454, 124405.
[11]
Hargis, D. E.; Takeuchi, E. B.; Bergstedt, R.; Flint, G.; Nelte, S.; Pessot, M. Solid-state laser-based displays. SID Symp. Dig. Tech. Pap. 1999, 30, 986-989.
[12]
Yaraş, F.; Kang, H.; Onural, L. Circular holographic video display system. Opt. Express 2011, 19, 9147-9156.
[13]
Khan, J.; Blackwell, C.; Can, C.; Underwood, I. 16-1: Invited Paper: Holographic volumetric 3D displays. SID Symp. Dig. Tech. Pap. 2018, 49, 177-180.
[14]
Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.
[15]
Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108-115.
[16]
Summary of the global AMOLED smartphone panel market in 2019. Sigmaintell 2020. http://www.sigmaintell.com/en/search.php?cid= 41&keys=Summary+of+the+global+AMOLED+smartphone+panel+ market+in+2019.
[17]
Ando, M.; Imai, T.; Yasumatsu, R.; Matsumi, T.; Tanaka, M.; Hirano, T.; Sasaoka, T. 68.3: WITHDRAWN 68.4L: Late-news paper: high-resolution printing of OLED displays. SID Symp. Dig. Tech. Pap. 2012, 43, 929-932.
[18]
Gensler, M.; Boeffel, C.; Kröpke, S.; Kronemeijer, A. J.; Ke, T. H.; Papadopoulos, N.; Yao, J.; Stark, J.; Obene, P. 82-5: Late-News Paper: High-resolution printing for future processing of RGB OLED displays. SID Symp. Dig. Tech. Pap. 2018, 49, 1117-1119.
[19]
Lee, M. T.; Shen, S. M.; Weng, Z. X.; Fu, J. J.; Chen, C. L.; Chuang, C. S.; Lin, Y. 40.3: One FMM solution for achieving active-matrix OLED with 413 ppi real pixel density. SID Symp. Dig. Tech. Pap. 2014, 45, 573-575.
[20]
Lih, J. J.; Chao, C. I.; Lee, C. C. 40.4: Invited Paper: The challenge of high resolution to active-matrix OLED. SID Symp. Dig. Tech. Pap. 2006, 37, 1459-1462.
[21]
Jeon, C. W.; Kim, K. S.; Dawson, M. D. Fabrication of two-dimensional InGaN-based micro-LED arrays. Phys. Status Solidi (A) 2002, 192, 325-328.
[22]
Li, D.; Kristal, B.; Wang, Y. J.; Feng, J. W.; Lu, Z. G.; Yu, G.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. Enhanced efficiency of InP-based red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 34067-34075.
[23]
Sabeeh, A.; Thakur, Y.; Ruzyllo, J. Lift-off patterning of nano-crystalline quantum dot films. ECS Trans. 2015, 69, 53-57.
[24]
Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448-6452.
[25]
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800-803.
[26]
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354-357.
[27]
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
[28]
Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634-638.
[29]
Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407-412.
[30]
Ding, K.; Fang, Y. S.; Dong, S. H.; Chen, H. T.; Luo, B. B.; Jiang, K.; Gu, H. G.; Fan, L. W.; Liu, S. Y.; Hu, B. et al. 24.1% external quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes. Adv. Opt. Mater. 2018, 6, 1800347.
[31]
Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192-197.
[32]
Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 2017, 9, 38755-38760.
[33]
Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.
[34]
Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969-973.
[35]
Jiang, C. B.; Mu, L.; Zou, J. H.; He, Z. W.; Zhong, Z. J.; Wang, L.; Xu, M.; Wang, J.; Peng, J. B.; Cao, Y. Full-color quantum dots active matrix display fabricated by ink-jet printing. Sci. China Chem. 2017, 60, 1349-1355.
[36]
Jiang, C. B.; Zhong, Z. M.; Liu, B. Q.; He, Z. W.; Zou, J. H.; Wang, L.; Wang, J.; Peng, J. B.; Cao, Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces 2016, 8, 26162-26168.
[37]
Kim, L.; Anikeeva, P. O.; Coe-Sullivan, S. A.; Steckel, J. S.; Bawendi, M. G.; Bulović, V. Contact printing of quantum dot light-emitting devices. Nano Lett. 2008, 8, 4513-4517.
[38]
Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176-182.
[39]
Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.
[40]
Kim, B. H.; Nam, S.; Oh, N.; Cho, S. Y.; Yu, K. J.; Lee, C. H.; Zhang, J. Q.; Deshpande, K.; Trefonas, P.; Kim, J. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 2016, 10, 4920-4925.
[41]
Li, Y. Z.; Chen, Z.; Kristal, B.; Zhang, Y. M.; Li, D.; Yu, G.; Wang, X. Y.; Wang, L.; Shi, Y. M.; Wang, Z. L. et al. 80-1: Invited Paper: Developing AMQLED technology for display applications. SID Symp. Dig. Tech. Pap. 2018, 49, 1076-1079.
[42]
Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron. Rev. 2012, 20, 148-152.
[43]
Wang, J.; Wang, C. F.; Shen, H. X.; Chen, S. Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chem. Commun. 2010, 46, 7376-7378.
[44]
Kwon, J. H.; Ji, S. H.; Han, S. H.; Kwak, M. S.; Jun, M.; Kang, I. B. P-184: Improvement of color mixing in high PPI mobile displays. SID Symp. Dig. Tech. Pap. 2016, 47, 1830-1833.
[45]
Oh, S. D.; Kim, J.; Lee, D. H.; Kim, J. H.; Jang, C. W.; Kim, S.; Choi, S. H. Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography. J. Phys. D. Appl. Phys. 2015, 49, 025308.
[46]
Hayashi, T.; Shibata, T.; Kawashima, T.; Makino, E.; Mineta, T.; Masuzawa, T. Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist. Sens. Actuators A Phys. 2008, 144, 381-388.
[47]
Njo, S. L.; van Asselt, R.; Broer, D. J.; de Witz, C. M. R. 23. 3: 23.3: Light-efficient liquid crystal displays using photoluminescent color filters. SID Symp. Dig. Tech. Pap. 2000, 31, 343-345.
[48]
Ko, F. J.; Shieh, H. P. D. High-efficiency micro-optical color filter for liquid-crystal projection system applications. Appl. Opt. 2000, 39, 1159-1163.
[49]
Wang, Y. Y.; Pan, J. A.; Wu, H. Q.; Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 2019, 13, 13917-13931.
[50]
Wang, Y. Y.; Fedin, I.; Zhang, H.; Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357, 385-388.
[51]
Hahm, D.; Park, J.; Jeong, I.; Rhee, S.; Lee, T.; Lee, C.; Chung, S.; Bae, W. K.; Lee, S. Surface engineered colloidal quantum dots for complete green process. ACS Appl. Mater. Interfaces 2020, 12, 10563-10570.
[52]
Kang, H. L.; Kang, J. G.; Won, J. K.; Jung, S. M.; Kim, J.; Park, C. H.; Ju, B. K.; Kim, M. G.; Park, S. K. Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring. Adv. Opt. Mater. 2018, 6, 1701335.
[53]
Ji, T. J.; Jin, S.; Zhang, H.; Chen, S. M.; Sun, X. W. Full color quantum dot light-emitting diodes patterned by photolithography technology. J. Soc. Inf. Disp. 2018, 26, 121-127.
[54]
Müller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-colour organic light-emitting displays by solution processing. Nature 2003, 421, 829-833.
[55]
Krotkus, S.; Ventsch, F.; Kasemann, D.; Zakhidov, A. A.; Hofmann, S.; Leo, K.; Gather, M. C. Photo-patterning of highly efficient state-of-the-art phosphorescent OLEDs using orthogonal hydrofluoroethers. Adv. Opt. Mater. 2014, 2, 1043-1048.
[56]
Dong, Y. F.; Fang, Z. Q.; Look, D. C.; Doutt, D. R.; Cantwell, G.; Zhang, J.; Song, J. J.; Brillson, L. J. Defects at oxygen plasma cleaned ZnO polar surfaces. J. Appl. Phys. 2010, 108, 103718.
[57]
Liu, L. S.; Mei, Z. X.; Tang, A. H.; Azarov, A.; Kuznetsov, A.; Xue, Q. K.; Du, X. L. Oxygen vacancies: The origin of n-type conductivity in ZnO. Phys. Rev. B 2016, 93, 235305.
[58]
Lee, H. S.; Kim, D.; Han, J. H.; Lee, T. W.; Lee, S.; Jeon, D. Y.; Choi, K. C. Efficient quantum dot light-emitting diodes by reducing oxygen vacancies of ZnO nanoparticles with recycling process. SID Symp. Dig. Tech. Pap. 2019, 50, 1666-1668.
[59]
Milleville, C. C.; Pelcher, K. E.; Sfeir, M. Y.; Banerjee, S.; Watson, D. F. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures. J. Phys. Chem. C 2016, 120, 5221-5232.
[60]
Nagpal, P.; Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nat. Commun. 2011, 2, 486.
[61]
Bartnik, A. C.; Efros, A. L.; Koh, W. K.; Murray, C. B.; Wise, F. W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 2010, 82, 195313.
File
12274_2020_2883_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2020
Revised: 15 May 2020
Accepted: 17 May 2020
Published: 25 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0401700).

Return