Journal Home > Volume 13 , Issue 8

Melanoma is a highly malignant skin tumor which is prone to recurrence and metastasis. Hydroxyapatite nanoparticles (nHAPs) were reported to possess a suppressive effect on proliferation of various tumor cells in vitro. This study aimed to assess in vitro and in vivo anti-tumor ability and biosafety of the nHAPs used in the treatment of melanoma. Three types of nHAPs with different morphology and crystallinity were synthesized. In vitro cell viability and proliferation studies demonstrated that all three types of nHAPs can inhibit viability and proliferation of A375 and SK-MEL-28 melanoma cells in a concentration-dependent manner. In addition, the rod-shape nHAPs with a crystallinity of 45.60% had the most prominent suppressive effect on the two melanoma cells tested. An important positive regulator of G1/S phase transition in cell cycle, Cyclin D1 protein, was reduced by nHAPs treatment in vivo. We further discovered that the migration ability of the nHAPs treated melanoma cells was greatly decreased. RNA sequencing result revealed that melanoma metastasis related genes were down-regulated by nHAPs, including MMP2, MMP14, ITGA9, ITGB3, ITGB4 and S100B. High concentration of nHAPs treatment in melanoma-bearing nude mice showed a strong inhibitory effect on tumor size and weight. Most importantly, hemolysis, electrolyte disturbance or inflammation response was not discovered in the experimental animals from nHAPs treated groups. We proved that the nHAPs synthesized in the current study has a selective effect to suppress melanoma tumor proliferation and was safe with regard to normal cells and tissue.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma

Show Author's information Zhongtao Li1Jiaoqing Tang1Hongfeng Wu2Zhixin Ling2Siyu Chen2Yong Zhou3Bo Guo4Xiao Yang2( )Xiangdong Zhu2Lin Wang1( )Chongqi Tu3Xingdong Zhang2
Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu 610041, China
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, China
Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China

Abstract

Melanoma is a highly malignant skin tumor which is prone to recurrence and metastasis. Hydroxyapatite nanoparticles (nHAPs) were reported to possess a suppressive effect on proliferation of various tumor cells in vitro. This study aimed to assess in vitro and in vivo anti-tumor ability and biosafety of the nHAPs used in the treatment of melanoma. Three types of nHAPs with different morphology and crystallinity were synthesized. In vitro cell viability and proliferation studies demonstrated that all three types of nHAPs can inhibit viability and proliferation of A375 and SK-MEL-28 melanoma cells in a concentration-dependent manner. In addition, the rod-shape nHAPs with a crystallinity of 45.60% had the most prominent suppressive effect on the two melanoma cells tested. An important positive regulator of G1/S phase transition in cell cycle, Cyclin D1 protein, was reduced by nHAPs treatment in vivo. We further discovered that the migration ability of the nHAPs treated melanoma cells was greatly decreased. RNA sequencing result revealed that melanoma metastasis related genes were down-regulated by nHAPs, including MMP2, MMP14, ITGA9, ITGB3, ITGB4 and S100B. High concentration of nHAPs treatment in melanoma-bearing nude mice showed a strong inhibitory effect on tumor size and weight. Most importantly, hemolysis, electrolyte disturbance or inflammation response was not discovered in the experimental animals from nHAPs treated groups. We proved that the nHAPs synthesized in the current study has a selective effect to suppress melanoma tumor proliferation and was safe with regard to normal cells and tissue.

Keywords: migration, hydroxyapatite nanoparticles, melanoma, RNA sequencing, biosafety

References(62)

[1]
Kawczyk-Krupka, A.; Bugaj, A. M.; Latos, W.; Zaremba, K.; Sieroń, A. Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagnosis Photodyn. Ther. 2013, 10, 503-509.
[2]
Domingues, B.; Lopes, J. M.; Soares, P.; Pópulo, H. Melanoma treatment in review. Immunotargets Ther. 2018, 7, 35-49.
[3]
Luo, L. J.; Shu, R.; Wu, A. G. Nanomaterial-based cancer immunotherapy. J. Mater. Chem. B 2017, 5, 5517-5531.
[4]
Zhang, Y.; Bush, X.; Yan, B. F.; Chen, J. A. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2019, 189, 48-59.
[5]
Zeng, Z.; Wei, Z. L.; Ma, L. M.; Xu, Y.; Xing, Z. H.; Niu, H.; Wang, H. B.; Huang, W. pH-responsive nanoparticles based on ibuprofen prodrug as drug carriers for inhibition of primary tumor growth and Metastasis. J. Mater. Chem. B 2017, 5, 6860-6868.
[6]
Li, L.; Song, L. J.; Yang, X.; Li, X.; Wu, Y. Z.; He, T.; Wang, N.; Yang, S. L. X.; Zeng, Y.; Yang, L. et al. Multifunctional “core-shell” nanoparticles-based gene delivery for treatment of aggressive melanoma. Biomaterials 2016, 111, 124-137.
[7]
Fraix, A.; Manet, I.; Ballestri, M.; Guerrini, A.; Dambruoso, P.; Sotgiu, G.; Varchi, G.; Camerin, M.; Coppellotti, O.; Sortino, S. Polymer nanoparticles with electrostatically loaded multicargo for combined cancer phototherapy. J. Mater. Chem. B 2015, 3, 3001-3010.
[8]
Su, H.; Wang, Y. F.; Gu, Y. L.; Bowman, L.; Zhao, J. S.; Ding, M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 2018, 38, 3-24.
[9]
Xu, Z. L.; Liu, C. S.; Wei, J.; Sun, J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J. Appl. Toxicol. 2012, 32, 429-435.
[10]
Yuan, Y.; Liu, C. S.; Qian, J. C.; Wang, J.; Zhang, Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010, 31, 730-740.
[11]
Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321-330.
[12]
Lee, W. H.; Loo, C. Y.; Rohanizadeh, R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. Mater. Sci. Eng. C 2019, 99, 929-939.
[13]
Farokhi, M.; Mottaghitalab, F.; Samani, S.; Shokrgozar, M. A.; Kundu, S. C.; Reis, R. L.; Fatahi, Y.; Kaplan, D. L. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 2018, 36, 68-91.
[14]
Aoki, H.; Ohgaki, M.; Kano, S. Effects of Adriacin-absorbing hydroxyapatite-sol on Ca-9 cell growth. Rep. Inst. Med. Dent. Eng. 1993, 27, 39-44.
[15]
Jin, J.; Zuo, G. F.; Xiong, G. Y.; Luo, H. L.; Li, Q. P.; Ma, C. Y.; Li, D. Y.; Gu, F.; Ma, Y. J.; Wan, Y. Z. The inhibition of lamellar hydroxyapatite and lamellar magnetic hydroxyapatite on the migration and adhesion of breast cancer cells. J. Mater. Sci.: Mater. Med. 2014, 25, 1025-1031.
[16]
Zhao, H.; Wu, C. H.; Gao, D.; Chen, S. P.; Zhu, Y. D.; Sun, J.; Luo, H. R.; Yu, K.; Fan, H. S.; Zhang, X. D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-Kinase/Protein Kinase B pathway. ACS Nano 2018, 12, 7838-7854.
[17]
Tang, W.; Yuan, Y.; Liu, C. S.; Wu, Y. Q.; Lu, X.; Qian, J. C. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 2014, 9, 397-412.
[18]
Meena, R.; Kesari, K. K.; Rani, M.; Paulraj, R. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J. Nanopart. Res. 2012, 14, 712.
[19]
Han, Y. C.; Li, S. P.; Cao, X. Y.; Yuan, L.; Wang, Y. F.; Yin, Y. X.; Qiu, T.; Dai, H. L.; Wang, X. Y. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep. 2014, 4, 7134.
[20]
Zhang, H. F.; Qing, F. Z.; Zhao, H.; Fan, H. S.; Liu, M.; Zhang, X. D. Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. J. Mater. Chem. B 2017, 5, 1205-1217.
[21]
Qing, F. Z.; Wang, Z.; Hong, Y. L.; Liu, M.; Guo, B.; Luo, H. R.; Zhang, X. D. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. J. Mater. Sci.: Mater. Med. 2012, 23, 2245-2251.
[22]
Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W. L.; Wu, H. F.; Tang, J. Q.; Li, Z. T.; Yu, S.; Li, X. F.; Min, L. et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv. 2019, 5, eaax6946.
[23]
Guo, B.; Li, B.; Wang, X. L.; Zhang, M. X.; Yan, N. H.; Zhang, X. D. Influence of different hydroxyapatite particles on the behavior of highly malignant melanoma cells. Key Eng. Mater. 2007, 330-332, 279-282.
[24]
Li, B.; Guo, B.; Fan, H. S.; Zhang, X. D. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci. 2008, 255, 357-360.
[25]
Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J. Nanopart. Res. 2012, 14, 819.
[26]
Tay, C. Y.; Fang, W. R.; Setyawati, M. I.; Chia, S. L.; Tan, K. S.; Hong, C. H. L.; Leong, D. T. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl. Mater. Interfaces 2014, 6, 6248-6256.
[27]
Shen, L.; Liu, L. B.; Yang, Z. Y.; Jiang, N. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis. Oncol. Lett. 2016, 11, 1382-1390.
[28]
Dower, C. M.; Wills, C. A.; Frisch, S. M.; Wang, H. G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy 2018, 14, 1110-1128.
[29]
Ma, X. H.; Wu, Y. T.; Zhang, T.; Song, H.; Jv, H. Y.; Guo, W.; Ren, G. X. Ki67 proliferation index as a histopathological predictive and prognostic parameter of oral mucosal melanoma in patients without distant metastases. J. Cancer 2017, 8, 3828-3837.
[30]
Liu, L. N.; Zhang, H. M.; Shi, L.; Zhang, W. J.; Yuan, J. L.; Chen, X.; Liu, J. J.; Zhang, Y.; Wang, Z. P. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells. Oncol. Rep. 2014, 32, 1395-1400.
[31]
Azevedo-Barbosa, H.; Ferreira-Silva, G. Á.; Silva, C. F.; De Souza, T. B.; Dias, D. F.; De Paula, A. C. C.; Ionta, M.; Carvalho, D. T. Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicol. Vitro 2019, 59, 150-160.
[32]
Musgrove, E. A.; Caldon, C. E.; Barraclough, J.; Stone, A.; Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 2011, 11, 558-572.
[33]
Katunarić, M.; Jurišić, D.; Petković, M.; Grahovac, M.; Grahovac, B.; Zamolo, G. EGFR and cyclin D1 in nodular melanoma: Correlation with pathohistological parameters and overall survival. Melanoma Res. 2014, 24, 584-591.
[34]
Müller, D. W.; Bosserhoff, A. K. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 2008, 27, 6698-6706.
[35]
Hodi, F. S.; O'Day, S. J.; McDermott, D. F.; Weber, R. W.; Sosman, J. A.; Haanen, J. B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J. C. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711-723.
[36]
Chen, X. J.; Deng, C. S.; Tang, S. L.; Zhang, M. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol. Pharm. Bull. 2007, 30, 128-132.
[37]
Chu, S. H.; Feng, D. F.; Ma, Y. B.; Li, Z. Q. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int. J. Nanomedicine 2012, 7, 3659-3666.
[38]
Sun, Y.; Chen, Y. Y.; Ma, X. Y.; Yuan, Y.; Liu, C. S.; Kohn, J.; Qian, J. C. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl. Mater. Interfaces 2016, 8, 25680-25690.
[39]
Lotfian, H.; Nemati, F. Cytotoxic effect of TiO2 nanoparticles on breast cancer cell line (MCF-7). IIOAB J. 2016, 7, 219-224.
[40]
Han, Y. C.; Wang, X. Y.; Dai, H. L.; Li, S. P. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl. Mater. Interfaces 2012, 4, 4616-4622.
[41]
Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Schiestel, T.; Schmidt, H.; Felix, R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 1999, 194, 185-196.
[42]
Navarro-Requena, C.; Pérez-Amodio, S.; Castaño, O.; Engel, E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology 2018, 29, 395102.
[43]
Li, Y.; Tan, B. B.; Zhao, Q.; Fan, L. Q.; Wang, D.; Liu, Y. ZNF139 promotes tumor metastasis by increasing migration and invasion in human gastric cancer cells. Neoplasma 2014, 61, 291-298.
[44]
Elkin, M.; Ariel, I.; Miao, H. Q.; Nagler, A.; Pines, M.; De-Groot, N.; Hochberg, A.; Vlodavsky, I. Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res. 1999, 59, 4111-4118.
[45]
Qian, Q.; Wang, Q.; Zhan, P.; Peng, L.; Wei, S. Z.; Shi, Y.; Song, Y. The role of matrix metalloproteinase 2 on the survival of patients with non-small cell lung cancer: A systematic review with meta-analysis. Cancer Invest. 2010, 28, 661-669.
[46]
Merchant, N.; Nagaraju, G. P.; Rajitha, B.; Lammata, S.; Jella, K. K.; Buchwald, Z. S.; Lakka, S. S.; Ali, A. N. Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis 2017, 38, 766-780.
[47]
Marusak, C.; Bayles, I.; Ma, J.; Gooyit, M.; Gao, M.; Chang, M.; Bedogni, B. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination. Pharmacol. Res. 2016, 113, 515-520.
[48]
Jiao, Y.; Feng, X.; Zhan, Y. P.; Wang, R. F.; Zheng, S.; Liu, W. G.; Zeng, X. L. Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One. 2012, 7, e41591.
[49]
Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994, 370, 61-65.
[50]
Moro, N.; Mauch, C.; Zigrino, P. Metalloproteinases in melanoma. Eur. J. Cell Biol. 2014, 93, 23-29.
[51]
Kurschat, P.; Wickenhauser, C.; Groth, W.; Krieg, T.; Mauch, C. Identification of activated matrix metalloproteinase-2 (MMP-2) as the main gelatinolytic enzyme in malignant melanoma by in situ zymography. J. Pathol. 2002, 197, 179-187.
[52]
Itoh, Y. MT1-MMP: A key regulator of cell migration in tissue. IUBMB Life. 2006, 58, 589-596.
[53]
Lydolph, M. C.; Morgan-Fisher, M.; Høye, A. M.; Couchman, J. R.; Wewer, U. M.; Yoneda, A. α9β1 integrin in melanoma cells can signal different adhesion states for migration and anchorage. Exp. Cell Res. 2009, 315, 3312-3324.
[54]
Zhang, J.; Na, S. J.; Liu, C. Y.; Pan, S. T.; Cai, J. Y.; Qiu, J. X. MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumor Biol. 2016, 37, 5941-5949.
[55]
Li, X. L.; Liu, L.; Li, D. D.; He, Y. P.; Guo, L. H.; Sun, L. P.; Liu, L. N.; Xu, H. X.; Zhang, X. P. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Sci. Rep. 2017, 7, 40464.
[56]
Zhou, X. Y.; Murphy, F. R.; Gehdu, N.; Zhang, J. L.; Iredale, J. P.; Benyon, R. C. Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J. Biol. Chem. 2004, 279, 23996-24006.
[57]
Gilbert, M.; Giachelli, C. M.; Stayton, P. S. Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J. Biomed. Mater. Res. A 2003, 67A, 67-77.
[58]
Zhao, R.; Chen, S. Y.; Yuan, B.; Chen, X. N.; Yang, X.; Song, Y. M.; Tang, H.; Yang, X.; Zhu, X. D.; Zhang, X. D. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale 2019, 11, 2721-2732.
[59]
Lin, J.; Yang, Q. Y.; Wilder, P. T.; Carrier, F.; Weber, D. J. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J. Biol. Chem. 2010, 285, 27487-27498.
[60]
Harpio, R.; Einarsson, R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem. 2004, 37, 512-518.
[61]
Salama, I.; Malone, P. S.; Mihaimeed, F.; Jones, J. L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 2008, 34, 357-364.
[62]
Pujari-Palmer, S.; Chen, S.; Rubino, S.; Weng, H.; Xia, W.; Engqvist, H.; Tang, L. P.; Ott, M. K. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials 2016, 90, 1-11.
File
12274_2020_2817_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2019
Revised: 13 April 2020
Accepted: 17 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (Nos. 2017YFB0702600 and 2017YFB0702604), Sichuan Science and Technology Innovation Team of China (No. 2019JDTD0008) and "111" Project of China (No. B16033).

Return