Journal Home > Volume 13 , Issue 6

Transition-metal ions doped nanocrystals (NCs), specifically Mn-doped NCs, hold great potential in the field of photocatalysis, especially, to improve photocatalytic performance for singlet oxygen (1O2) generation. Here, we report the design of a novel Mn-doped NC-based nanocomposites, specifically, silica-coated Mn-doped CdS/ZnS NCs decorated with Pt NCs (denoted as Mn-NCs@SiO2-Pt), which enhance photocatalytic 1O2 generation. Owing to the long-lived Mn excited state (on the order of ms), the energy-transfer between Mn-NCs and molecular oxygen is facilitated with the assistance of the Pt NCs adhered to the Mn-NC@SiO2 surface. Therefore, the Mn-NCs@SiO2-Pt composites, integrate the advantages of Mn-doped NCs, a protective silica layer, and Pt NCs to exhibit excellent catalytic activity and selectivity for the selective oxidation of primary benzylic alcohols to aldehydes through an 1O2 engaged oxidation process under visible-light irradiation. This work paves the way for enhancing catalytic performance via facilitated energy transfer relaxation by utilizing the long-lived excited-state of Mn2+ dopant ions in nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols

Show Author's information Zhi-Jun Li1Shuya Li2Andrew Hunter Davis1Elan Hofman1Gyu Leem2,3Weiwei Zheng1( )
Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA

Abstract

Transition-metal ions doped nanocrystals (NCs), specifically Mn-doped NCs, hold great potential in the field of photocatalysis, especially, to improve photocatalytic performance for singlet oxygen (1O2) generation. Here, we report the design of a novel Mn-doped NC-based nanocomposites, specifically, silica-coated Mn-doped CdS/ZnS NCs decorated with Pt NCs (denoted as Mn-NCs@SiO2-Pt), which enhance photocatalytic 1O2 generation. Owing to the long-lived Mn excited state (on the order of ms), the energy-transfer between Mn-NCs and molecular oxygen is facilitated with the assistance of the Pt NCs adhered to the Mn-NC@SiO2 surface. Therefore, the Mn-NCs@SiO2-Pt composites, integrate the advantages of Mn-doped NCs, a protective silica layer, and Pt NCs to exhibit excellent catalytic activity and selectivity for the selective oxidation of primary benzylic alcohols to aldehydes through an 1O2 engaged oxidation process under visible-light irradiation. This work paves the way for enhancing catalytic performance via facilitated energy transfer relaxation by utilizing the long-lived excited-state of Mn2+ dopant ions in nanocomposites.

Keywords: photocatalysis, singlet oxygen, energy transfer, selective oxidation, doped nanocrystals

References(74)

[1]
Ghogare, A. A.; Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 2016, 116, 9994-10034.
[2]
Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885-2911.
[3]
Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.
[4]
Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669-11717.
[5]
Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104, 3037-3058.
[6]
Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y. H.; Yang, Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480-3524.
[7]
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
[8]
Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869-10939.
[9]
Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200-3207.
[10]
Urakami, H.; Zhang, K.; Vilela, F. Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem. Commun. 2013, 49, 2353-2355.
[11]
Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712-16715.
[12]
Park, J.; Feng, D. W.; Yuan, S.; Zhou, H. C. Photochromic metal- organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem., Int. Ed. 2015, 54, 430-435.
[13]
Schilling, W.; Riemer, D.; Zhang, Y.; Hatami, N.; Das, S. Metal-free catalyst for visible-light-induced oxidation of unactivated alcohols using air/oxygen as an oxidant. ACS Catal. 2018, 8, 5425-5430.
[14]
Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368-3374.
[15]
Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376-11382.
[16]
Vankayala, R.; Sagadevan, A.; Vijayaraghavan, P.; Kuo, C. L.; Hwang, K. C. Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem., Int. Ed. 2011, 50, 10640-10644.
[17]
Macia, N.; Bresoli-Obach, R.; Nonell, S.; Heyne, B. Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 2019, 141, 684-692.
[18]
Wang, H.; Jiang, S. L.; Chen, S. S.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 2016, 28, 6940-6945.
[19]
Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.
[20]
Fujii, M.; Minobe, S.; Usui, M.; Hayashi, S.; Gross, E.; Diener, J.; Kovalev, D. Generation of singlet oxygen at room temperature mediated by energy transfer from photoexcited porous Si. Phys. Rev. B 2004, 70, 085311.
[21]
Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, USA, 2006.
DOI
[22]
Qi, J.; Ma, N.; Ma, X. C.; Adelung, R.; Yang, Y. Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl. Mater. Interfaces 2018, 10, 13712-13719.
[23]
Lin, Z. H.; Cheng, G.; Yang, Y.; Zhou, Y. S.; Lee, S.; Wang, Z. L. Triboelectric nanogenerator as an active UV photodetector. Adv. Funct. Mater. 2014, 24, 2810-2816.
[24]
Song, K.; Ma, N.; Yang, Y. Enhanced self-powered UV photoresponse of ferroelectric PZT materials by pyroelectric effect. Adv. Mater. Technol. 2017, 2, 1700221.
[25]
Ouyang, B. S.; Zhang, K. W.; Yang, Y. Self-powered UV photodetector array based on P3HT/ZnO nanowire array heterojunction. Adv. Mater. Technol. 2017, 2, 1700208.
[26]
Qi, J.; Ma, N.; Yang, Y. Photovoltaic-pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv. Mater. Interfaces 2018, 5, 1701189.
[27]
Ma, N.; Zhang, K. W.; Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 2017, 29, 1703694.
[28]
Gao, T. T.; Ji, Y.; Yang, Y. Thermo-phototronic-effect-enhanced photodetectors based on porous ZnO materials. Adv. Electron. Mater. 2019, 5, 1900776.
[29]
Yang, Y.; Guo, W.; Qi, J. J.; Zhao, J.; Zhang, Y. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett. 2010, 97, 223113.
[30]
Guo, W.; Yang, Y.; Qi, J. J.; Zhao, J.; Zhang, Y. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires. Appl. Phys. Lett. 2010, 97, 133112.
[31]
Li, J.; Cai, S. Y.; Chen, J. T.; Zhao, Y. H.; Wang, D. Z. Visible light induced photocatalytic conversion of enamines into amides. Synlett 2014, 25, 1626-1628.
[32]
Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536-711.
[33]
Duong, H. D.; Rhee, J. I. Singlet oxygen production by fluorescence resonance energy transfer (FRET) from green and orange CdSe/ZnS QDs to protoporphyrin IX (PpIX). Chem. Phys. Lett. 2011, 501, 496-501.
[34]
Drozdek, S.; Szeremeta, J.; Lamch, L.; Nyk, M.; Samoc, M.; Wilk, K. A. Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1-x/ZnS core/shell quantum dots and zinc(II) phthalocyanine. J. Phys. Chem. C 2016, 120, 15460-15470.
[35]
Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761-6770.
[36]
Yang, X. L.; Pu, C. D.; Qin, H. Y.; Liu, S. J.; Xu, Z.; Peng, X. G. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 2288-2298.
[37]
White, M. A.; Weaver, A. L.; Beaulac, R.; Gamelin, D. R. Electrochemically controlled Auger quenching of Mn2+ photoluminescence in doped semiconductor nanocrystals. ACS Nano 2011, 5, 4158-4168.
[38]
Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489-5521.
[39]
Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 7038-7054.
[40]
Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R. Mn2+-doped CdSe quantum dots: New inorganic materials for spin-electronics and spin-photonics. Adv. Funct. Mater. 2008, 18, 3873-3891.
[41]
Peng, B.; Liang, W.; White, M. A.; Gamelin, D. R.; Li, X. S. Theoretical evaluation of spin-dependent Auger de-excitation in Mn2+-doped semiconductor nanocrystals. J. Phys. Chem. C 2012, 116, 11223-11231.
[42]
Li, Z. J.; Hofman, E.; Blaker, A.; Davis, A. H.; Dzikovski, B.; Ma, D. K.; Zheng, W. Interface engineering of Mn-doped ZnSe-based core/shell nanowires for tunable host-dopant coupling. ACS Nano 2017, 11, 12591-12600.
[43]
Hofman, E.; Robinson, R. J.; Li, Z. J.; Dzikovski, B.; Zheng, W. Controlled dopant migration in CdS/ZnS core/shell quantum dots. J. Am. Chem. Soc. 2017, 139, 8878-8885.
[44]
Falk, H.; Hübner, J.; Klar, P. J.; Heimbrodt, W. Intralayer and interlayer energy transfer from excitonic states into the Mn 3d5 shell in diluted magnetic semiconductor structures. Phys. Rev. B 2003, 68, 165203.
[45]
Irvine, S. E.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, S. W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem., Int. Ed. 2008, 47, 2685-2688.
[46]
Dong, Y. T.; Choi, J.; Jeong, H. K.; Son, D. H. Hot electrons generated from doped quantum dots via upconversion of excitons to hot charge carriers for enhanced photocatalysis. J. Am. Chem. Soc. 2015, 137, 5549-5554.
[47]
Dong, Y. T.; Parobek, D.; Rossi, D.; Son, D. H. Photoemission of energetic hot electrons produced via up-conversion in doped quantum dots. Nano Lett. 2016, 16, 7270-7275.
[48]
Chen, H. Y.; Chen, T. Y.; Berdugo, E.; Park, Y.; Lovering, K.; Son, D. H. Hot electrons from consecutive exciton-Mn energy transfer in Mn-doped semiconductor nanocrystals. J. Phys. Chem. C 2011, 115, 11407-11412.
[49]
Stewart, M. H.; Huston, A. L.; Scott, A. M.; Efros, A. L.; Melinger, J. S.; Gemmill, K. B.; Trammell, S. A.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz, I. L. Complex förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly. ACS Nano 2012, 6, 5330-5347.
[50]
Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 2017, 117, 712-757.
[51]
Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508-2511.
[52]
Davis, A. H.; Hofman, E.; Chen, K.; Li, Z. J.; Khammang, A.; Zamani, H.; Franck, J. M.; Maye, M. M.; Meulenberg, R. W.; Zheng, W. Exciton energy shifts and tunable dopant emission in manganese-doped two-dimensional CdS/ZnS core/shell nanoplatelets. Chem. Mater. 2019, 31, 2516-2523.
[53]
Porambo, M. W.; Howard, H. R.; Marsh, A. L. Dopant effects on the photocatalytic activity of colloidal zinc sulfide semiconductor nanocrystals for the oxidation of 2-chlorophenol. J. Phys. Chem. C 2010, 114, 1580-1585.
[54]
Algar, W. R.; Khachatrian, A.; Melinger, J. S.; Huston, A. L.; Stewart, M. H.; Susumu, K.; Blanco-Canosa, J. B.; Oh, E.; Dawson, P. E.; Medintz, I. L. Concurrent modulation of quantum dot photoluminescence using a combination of charge transfer and förster resonance energy transfer: Competitive quenching and multiplexed biosensing modality. J. Am. Chem. Soc. 2017, 139, 363-372.
[55]
Teegardin, K.; Day, J. I.; Chan, J.; Weaver, J. Advances in photocatalysis: A microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process Res. Dev. 2016, 20, 1156-1163.
[56]
Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 2018, 140, 13522-13533.
[57]
Kelly, C. B.; Patel, N. R.; Primer, D. N.; Jouffroy, M.; Tellis, J. C.; Molander, G. A. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Nat. Protoc. 2017, 12, 472-492.
[58]
Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.
[59]
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.
[60]
Wang, J.; Mora-Seró, I.; Pan, Z. X.; Zhao, K.; Zhang, H.; Feng, Y. Y.; Yang, G.; Zhong, X. H.; Bisquert, J. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 2013, 135, 15913-15922.
[61]
Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701-11708.
[62]
Gao, X. Q.; Zhang, X. W.; Deng, K.; Han, B.; Zhao, L. Y.; Wu, M. H.; Shi, L.; Lv, J. W.; Tang, Z. Y. Excitonic circular dichroism of chiral quantum rods. J. Am. Chem. Soc. 2017, 139, 8734-8739.
[63]
Graff, B. M.; Bloom, B. P.; Wierzbinski, E.; Waldeck, D. H. Electron transfer in nanoparticle dyads assembled on a colloidal template. J. Am. Chem. Soc. 2016, 138, 13260-13270.
[64]
Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.
[65]
Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and langmuir-blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188-193.
[66]
Watanabe, T.; Honda, K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem. 1982, 86, 2617-2619.
[67]
Diaz-Diestra, D.; Beltran-Huarac, J.; Bracho-Rincon, D. P.; González-Feliciano, J. A.; González, C. I.; Weiner, B. R.; Morell, G. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media. J. Nanopart. Res. 2015, 17, 461.
[68]
Makino, K.; Hagiwara, T.; Murakami, A. A mini review: Fundamental aspects of spin trapping with DMPO. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 1991, 37, 657-665.
[69]
Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M. Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen. Redox Rep. 2001, 6, 319-325.
[70]
Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999, 103, 3818-3827.
[71]
Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749-5752.
[72]
Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927-2954.
[73]
Yu, S.; Fan, X. B.; Wang, X.; Li, J. G..; Zhang, Q.; Xia, A. D.; Wei, S. Q.; Wu, L. Z.; Zhou, Y.; Patzke, G. R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009.
[74]
Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, USA, 2007.
File
12274_2020_2790_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2020
Revised: 19 March 2019
Accepted: 04 April 2020
Published: 11 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

W. Z. acknowledges the support from the start-up grant of Syracuse University, ACS-PRF (No. 59861-DNI5) and NSF CHE MSN (No. 05539CON04700). W. Z. appreciates the valuable discussion on the reaction mechanism with Prof. Timothy Korter.

Return