Journal Home > Volume 12 , Issue 12

The effect of the residual thermal stress of NiO films on the performance of an inverted type perovskite solar cell was studied. In this study, NiO films were grown on fluorine doped tin oxide (FTO) substrates of different surface roughness by thermally oxidizing Ni film and were tested as a hole transport layer for large-scale perovskite solar cells. Experimental and simulation results show that it is very important to suppress the appearance of the residual stress at the NiO-FTO interface during the oxidation of the Ni film for effective hole extraction. The Ni oxidation on the flat FTO film produced in-plane compressive stress in the NiO film due to the Ni film volume expansion. This led to the formation of defects including small blisters. These residual stress and defects increased leakage current through the NiO film, preventing holes from being selectively collected at the NiO-perovskite interface. However, when Ni was deposited and oxidized on the rough surface, the residual stress of the NiO film was negligible and its inherent high resistance was maintained. Stress-free NiO film is an excellent hole transport layer that stops the photogenerated electrons of the perovskite layer from moving to FTO. The improvements in the structural and electrical qualities of the NiO film by engineering the residual stress reduce the carrier recombination and increase the power conversion efficiency of the perovskite solar cells to 16.37%.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells

Show Author's information Seongha Lee1Hee-Suk Roh1Gill Sang Han2( )Jung-Kun Lee1( )
Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghPennsylvania15261USA
School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea

Abstract

The effect of the residual thermal stress of NiO films on the performance of an inverted type perovskite solar cell was studied. In this study, NiO films were grown on fluorine doped tin oxide (FTO) substrates of different surface roughness by thermally oxidizing Ni film and were tested as a hole transport layer for large-scale perovskite solar cells. Experimental and simulation results show that it is very important to suppress the appearance of the residual stress at the NiO-FTO interface during the oxidation of the Ni film for effective hole extraction. The Ni oxidation on the flat FTO film produced in-plane compressive stress in the NiO film due to the Ni film volume expansion. This led to the formation of defects including small blisters. These residual stress and defects increased leakage current through the NiO film, preventing holes from being selectively collected at the NiO-perovskite interface. However, when Ni was deposited and oxidized on the rough surface, the residual stress of the NiO film was negligible and its inherent high resistance was maintained. Stress-free NiO film is an excellent hole transport layer that stops the photogenerated electrons of the perovskite layer from moving to FTO. The improvements in the structural and electrical qualities of the NiO film by engineering the residual stress reduce the carrier recombination and increase the power conversion efficiency of the perovskite solar cells to 16.37%.

Keywords: surface roughness, residual stress, perovskite solar cells, nickel oxidation, large scale processing

References(42)

1

Leblebici, S. Y.; Leppert, L.; Li, Y. B.; Reyes-Lillo, S. E.; Wickenburg, S.; Wong, E.; Lee, J.; Melli, M.; Ziegler, D.; Angell, D. K. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 2016, 1, 16093.

2

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

3

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

4

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

5

Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

6

Chen, B.; Yang, M. J.; Priya, S.; Zhu, K. Origin of JV hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 905–917.

7

Han, G. S.; Shim, H. W.; Lee, S.; Duff, M. L.; Lee, J. K. Low-temperature modification of ZnO nanoparticles film for electron-transport layers in perovskite solar cells. ChemSusChem 2017, 10, 2425–2430.

8

Han, G. S.; Yoo, J. S.; Yu, F. D.; Duff, M. L.; Kang, B. K.; Lee, J. K. Highly stable perovskite solar cells in humid and hot environment. J. Mater. Chem. A 2017, 5, 14733–14740.

9

Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608.

10

Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 2010, 132, 16883–16892.

11

Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Eng. Mater. Sol. Cells 2008, 92, 686–714.

12

Kwon, U.; Kim, B. G.; Nguyen, D. C.; Park, J. H.; Ha, N. Y.; Kim, S. J.; Ko, S. H.; Lee, S.; Lee, D.; Park, H. J. Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells. Sci. Rep. 2016, 6, 30759.

13

Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, W. G. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P. et al. P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 2014, 4, 4756.

14

Yin, X. T.; Guo, Y. X.; Xie, H. X.; Que, W. X.; Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 2019, 3, 1900001.

15

Yin, X. T.; Que, M. D.; Xing, Y. L.; Que, W. X. High efficiency hysteresisless inverted planar heterojunction perovskite solar cells with a solutionderived NiOx hole contact layer. J. Mater. Chem. A 2015, 3, 24495–24503.

16

Yin, X. W.; Yao, Z. B.; Luo, Q.; Dai, X. Z.; Zhou, Y.; Zhang, Y.; Zhou, Y. Y.; Luo, S. P.; Li, J. B.; Wang, N. et al. High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS Appl. Mater. Interfaces 2017, 9, 2439–2448.

17

Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

18

Li, G. J.; Jiang, Y. B.; Deng, S. B.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 2017, 4, 1700463.

19

Peng, Y. Y.; Cheng, Y. D.; Wang, C. H.; Zhang, C. J.; Xia, H. Y.; Huang, K. Q.; Tong, S. C.; Hao, X. T.; Yang, J. L. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Org. Electron. 2018, 58, 153–158.

20

Wang, T.; Ding, D.; Wang, X.; Zeng, R. R.; Liu, H.; Shen, W. Z. Highperformance inverted perovskite solar cells with mesoporous NiOx hole transport layer by electrochemical deposition. ACS Omega 2018, 3, 18434–18443.

21

Seo, S.; Park, I. J.; Kim, M.; Lee, S.; Bae, C.; Jung, H. S.; Park, N. G.; Kim, J. Y.; Shin, H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale 2016, 8, 11403–11412.

22

Pae, S. R.; Byun, S.; Kim, J.; Kim, M.; Gereige, I.; Shin, B. Improving uniformity and reproducibility of hybrid perovskite solar cells via a low-temperature vacuum deposition process for NiOx hole transport layers. ACS Appl. Mater. Interfaces 2018, 10, 534–540.

23

Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C. et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 2015, 27, 4013–4019.

24

Mitra, R. Structural Intermetallics and Intermetallic Matrix Composites; CRC Press: Boca Raton, 2015.

DOI
25

Unutulmazsoy, Y.; Merkle, R.; Fischer, D.; Mannhart, J.; Maier, J. The oxidation kinetics of thin nickel films between 250 and 500 ℃. Phys. Chem. Chem. Phys. 2017, 19, 9045–9052.

26

Giovanardi, C.; di Bona, A.; Altieri, S.; Luches, P.; Liberati, M.; Rossi, F.; Valeri, S. Structure and morphology of ultrathin NiO layers on Ag(001). Thin Solid Films 2003, 428, 195–200.

27

Liu, C.; Huntz, A. M.; Lebrun, J. L. Origin and development of residual stresses in the Ni-NiO system: In-situ studies at high temperature by X-ray diffraction. Mater. Sci. Eng. A 1993, 160, 113–126.

28

Schade, H.; Smith, Z. E. Mie scattering and rough surfaces. Appl. Opt. 1985, 24, 3221–3226.

29

González-Alcalde, A. K.; Méndez, E. R.; Terán, E.; Cuppo, F. L. S.; Olivares, C. J. A.; García-Valenzuela, A. Reflection of diffuse light from dielectric one-dimensional rough surfaces. J. Opt. Soc. Am. A 2016, 33, 373–382.

30

Hutchinson, J. W. Stresses and Failure Modes in Thin films and Multilayers; Technical University of Denmark: Lyngby, 1996.

31

Nastasi, M.; Höchbauer, T.; Lee, J. K.; Misra, A.; Hirth, J. P. Nucleation and growth of platelets in hydrogen-ion-implanted silicon. Appl. Phys. Lett. 2005, 86, 154102.

32

Lee, J. K.; Lin, Y.; Jia, Q. X.; Höchbauer, T.; Jung, H. S.; Shao, L.; Misra, A.; Nastasi, M. Role of strain in the blistering of hydrogen-implanted silicon. Appl. Phys. Lett. 2006, 89, 101901.

33

Jamal, M. S.; Shahahmadi, S. A.; Chelvanathan, P.; Alharbi, H. F.; Karim, M. R.; Dar, M. A.; Luqman, M.; Alharthi, N. H.; Al-Harthi, Y. S.; Aminuzzaman, M. et al. Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 2019, 14, 102360.

34

Mahalingam, T.; John, V. S.; Ravi, G.; Sebastian, P. J. Microstructural characterization of electrosynthesized ZnTe thin films. Cryst Res. Technol. 2002, 37, 329–339.

DOI
35

Dabrowski, J.; Müssig, H. J. Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World; World Scientific: Singapore, 2000; pp 414–416.

DOI
36

Tosha, K.; Iida, K. Residual Stress and Hardness Distributions Induced by Shot Peening; International Scientific Committee for Shot Peening: Tokyo, Japan, 1990; pp 379–388.

37

Chen, X.; Vlassak, J. J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 2001, 16, 2974–2982.

38

Pharr, G. M.; Oliver, W. C.; Brotzen, F. R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7, 613–617.

39

Wang, Z. G. Influences of sample preparation on the indentation size effect & nanoindentation pop-in in nickel. Ph. D. Dissertation, University of Tennessee, Knoxville, 2012.

40

Fasaki, I.; Koutoulaki, A.; Kompitsas, M.; Charitidis, C. Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2010, 257, 429–433.

41

De Los Santos Valladares, L.; Ionescu, A.; Holmes, S.; Barnes, C. H. W. Characterization of Ni thin films following thermal oxidation in air. J. Vac. Sci. Technol. B 2014, 32, 051808.

42

Zhang, J.; Zhang, L.; Dong, Y.; Li, H. Y.; Tan, C. M.; Xia, G.; Tan, C. S. The dependency of TSV keep-out zone (KOZ) on Si crystal direction and liner material. In 2013 IEEE International 3D Systems Integration Conference, San Francisco, CA, USA, 2013.

File
12274_2019_2556_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2019
Revised: 05 October 2019
Accepted: 31 October 2019
Published: 16 November 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported from the Global Frontier R & D Program on Center for Multiscale Energy System, Republic of Korea (No. 2012M3A6A7054855) and National Science Foundation (NSF 1709307).

Return