Journal Home > Volume 12 , Issue 11

The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.


menu
Abstract
Full text
Outline
About this article

Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide

Show Author's information Ava Faridi1Yunxiang Sun2,3Monika Mortimer4Ritchlynn R. Aranha5Aparna Nandakumar1Yuhuan Li1Ibrahim Javed1Aleksandr Kakinen1Qingqing Fan1Anthony W. Purcell5Thomas P. Davis1,6( )Feng Ding3( )Pouya Faridi5( )Pu Chun Ke1( )
ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
Department of PhysicsNingbo UniversityNingbo315211China
Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
Institute of Environmental and Health SciencesCollege of Quality and Safety EngineeringChina Jiliang UniversityHangzhou310018China
Infection and Immunity Program & Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia

Abstract

The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.

Keywords: graphene quantum dot, islet amyloid polypeptide (IAPP), oligomer, amyloid, protein expression

References(51)

1

Ke, P. C.; Sani, M. A.; Ding, F.; Kakinen, A.; Javed, I.; Separovic, F.; Davis, T. P.; Mezzenga, R. Implications of peptide assemblies in amyloid diseases. Chem. Soc. Rev. 2017, 46, 6492-6531.

2

Zhang, X. X.; St. Clair, J. R.; London, E.; Raleigh, D. P. Islet amyloid polypeptide membrane interactions: Effects of membrane composition. Biochemistry 2017, 56, 376-390.

3

Cao, P.; Abedini, A.; Wang, H.; Tu, L. H.; Zhang, X. X.; Schmidt, A. M.; Raleigh, D. P. Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. USA 2013, 110, 19279-19284.

4

Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384-396.

5

Sudhakar, S.; Kalipillai, P.; Santhosh, P. B.; Mani, E. Role of surface charge of inhibitors on amyloid beta fibrillation. J. Phys. Chem. C 2017, 121, 6339-6348.

6

Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 2008, 29, 303-316.

7

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.

8

Fusco, G.; Chen, S. W.; Williamson, P. T. F.; Cascella, R.; Perni, M.; Jarvis, J. A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 2017, 358, 1440-1443.

9

Sebollela, A.; Freitas-Correa, L.; Oliveira, F. F.; Paula-Lima, A. C.; Saraiva, L. M.; Martins, S. M.; Mota, L. D.; Torres, C.; Alves-Leon, S.; de Souza, J. M. et al. Amyloid-β oligomers induce differential gene expression in adult human brain slices. J. Biol. Chem. 2012, 287, 7436-7445.

10

Kong, L. N.; Zuo, P. P.; Mu, L.; Liu, Y. Y.; Yang, N. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease. Acta Pharmacol. Sin. 2005, 26, 666-672.

11

Kakinen, A.; Adamcik, J.; Wang, B.; Ge, X. W.; Mezzenga, R.; Davis, T. P.; Ding, F.; Ke, P. C. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Res. 2018, 11, 3636-3647.

12

Nedumpully-Govindan, P.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016, 6, 19463.

13

Gurzov, E. N.; Wang, B.; Pilkington, E. H.; Chen, P. Y.; Kakinen, A.; Stanley, W. J.; Litwak, S. A.; Hanssen, E. G.; Davis, T. P.; Ding, F. et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small 2016, 12, 1615-1626.

14

Pilkington, E. H.; Lai, M.; Ge, X. W.; Stanley, W. J.; Wang, B.; Wang, M. Y.; Kakinen, A.; Sani, M. A.; Whittaker, M. R.; Gurzov, E. N. et al. Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation. Biomacromolecules 2017, 18, 4249-4260.

15

Javed, I.; Yu, T. Y.; Peng, G. T.; Sánchez-Ferrer, A.; Faridi, A.; Kakinen, A.; Zhao, M.; Mezzenga, R.; Davis, T. P.; Lin, S. J. et al. In vivo mitigation of amyloidogenesis through functional-pathogenic double-protein coronae. Nano Lett. 2018, 18, 5797-5804.

16

Wang, M. Y.; Sun, Y. X.; Cao, X. Y.; Peng, G. T.; Javed, I.; Kakinen, A.; Davis, T. P.; Lin, S. J.; Liu, J. Q.; Ding, F. et al. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale 2018, 10, 19995-20006.

17

Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858-6867.

18

Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M. J.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease. Nat. Nanotechnol. 2018, 13, 812-818.

19

Wang, M. Y.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci. 2017, 5, 485-493.

20

Portelius, E.; Zetterberg, H.; Gobom, J.; Andreasson, U.; Blennow, K. Targeted proteomics in Alzheimer's disease: Focus on amyloid-β. Expert Rev. Proteomics 2008, 5, 225-237.

21

Savas, J. N.; Wang, Y. Z.; DeNardo, L. A.; Martinez-Bartolome, S.; McClatchy, D. B.; Hark, T. J.; Shanks, N. F.; Cozzolino, K. A.; Lavallée-Adam, M.; Smukowski, S. N. et al. Amyloid accumulation drives proteome-wide alterations in mouse models of Alzheimer's disease-like pathology. Cell Rep. 2017, 21, 2614-2627.

22

Sun, Y. X.; Kakinen, A.; Xing, Y. T.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 434-444.

23

Usov, I.; Mezzenga, R. FiberApp: An open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 2015, 48, 1269-1280.

24

Lin, C. Y.; Gurlo, T.; Kayed, R.; Butler, A. E.; Haataja, L.; Glabe, C. G.; Butler, P. C. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 2007, 56, 1324-1332.

25

Faridi, A.; Sun, Y. X.; Okazaki, Y.; Peng, G. T.; Gao, J.; Kakinen, A.; Faridi, P.; Zhao, M.; Javed, I.; Purcell, A. W. et al. Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons. Small 2018, 14, 1802825.

26

Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300, 486-489.

27

Lopes, D. H. J.; Colin, C.; Degaki, T. L.; de Sousa, A. C. V.; Vieira, M. N. N.; Sebollela, A.; Martinez, A. M. B.; Bloch, C. Jr.; Ferreira, S. T.; Sogayar, M. C. Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J. Biol. Chem. 2004, 279, 42803-42810.

28

Krotee, P.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Reyes, F. E.; Shi, D.; Hattne, J.; Nannenga, B. L.; Oskarsson, M. E.; Philipp, S. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 2017, 6, e19273.

29

Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D'Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G. R.; Wu, G. R.; Matthews, L. et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 2005, 33, D428-D432.

30

Cremades, N.; Cohen, S. I. A.; Deas, E.; Abramov, A. Y.; Chen, A. Y.; Orte, A.; Sandal, M.; Clarke, R. W.; Dunne, P.; Aprile, F. A. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012, 149, 1048-1059.

31

Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K. P. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447-D452.

32

Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N. T.; Roth, A.; Bork, P. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362-D368.

33

Mi, H. Y.; Huang, X. S.; Muruganujan, A.; Tang, H. M.; Mills, C.; Kang, D.; Thomas, P. D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183-D189.

34

Zhou, X.; Liao, W. J.; Liao, J. M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92-104.

35

Deng, L. T.; Pushpitha, K.; Joseph, C.; Gupta, V.; Rajput, R.; Chitranshi, N.; Dheer, Y.; Amirkhani, A.; Kamath, K.; Pascovici, D. et al. Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells. Front. Mol. Neurosci. 2019, 12, 24.

36

Anantharam, V.; Lehrmann, E.; Kanthasamy, A.; Yang, Y. J.; Banerjee, P.; Becker, K. G.; Freed, W. J.; Kanthasamy, A. G. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: Relevance to oxidative damage in Parkinson's disease. Neurochem. Int. 2007, 50, 834-847.

37

Pavel, M.; Imarisio, S.; Menzies, F. M.; Jimenez-Sanchez, M.; Siddiqi, F. H.; Wu, X. T.; Renna, M.; O'Kane, C. J.; Crowther, D. C.; Rubinsztein, D. C. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun. 2016, 7, 13821.

38

Garcia-Esparcia, P.; Sideris-Lampretsas, G.; Hernandez-Ortega, K.; Grau-Rivera, O.; Sklaviadis, T.; Gelpi, E.; Ferrer, I. Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model. Am. J. Neurodegener. Dis. 2017, 6, 15-25.

39

Nutter, C. A.; Kuyumcu-Martinez, M. N. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdiscip. Rev. RNA 2018, 9, e1459.

40

Juan-Mateu, J.; Villate, O.; Eizirik, D. L. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: The new frontier in diabetes research. Eur. J. Endocrinol. 2016, 174, R225-R238.

41

Love, J. E.; Hayden, E. J.; Rohn, T. T. Alternative splicing in Alzheimer's disease. J. Parkinsons Dis. Alzheimers Dis. 2015, 2, 6.

42

Lashuel, H. A.; Aljabari, B.; Sigurdsson, E. M.; Metz, C. N.; Leng, L.; Callaway, D. J. E.; Bucala, R. Amyloid fibril formation by macrophage migration inhibitory factor. Biochem. Biophys. Res. Commun. 2005, 338, 973-980.

43

Gevorkian, G.; Gonzalez-Noriega, A.; Acero, G.; Ordoñez, J.; Michalak, C.; Munguia, M. E.; Govezensky, T.; Cribbs, D. H.; Manoutcharian, K. Amyloid-β peptide binds to microtubule-associated protein 1B (MAP1B). Neurochem. Int. 2008, 52, 1030-1036.

44

Pianu, B.; Lefort, R.; Thuiliere, L.; Tabourier, E.; Bartolini, F. The Aβ1-42 peptide regulates microtubule stability independently of tau. J. Cell Sci. 2014, 127, 1117-1127.

45

Luo, J. H.; Wärmländer, S. K. T. S.; Gräslund, A.; Abrahams, J. P. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the Amyloid cascade hypothesis. J. Biol. Chem. 2016, 291, 16485-16493.

46

Lim, Y. A.; Rhein, V.; Baysang, G.; Meier, F.; Poljak, A.; Raftery, M. J.; Guilhaus, M.; Ittner, L. M.; Eckert, A.; Götz, J. Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 2010, 10, 1621-1633.

47

Götz, J.; Lim, Y. A.; Eckert, A. Lessons from two prevalent amyloidoses-what amylin and Aβ have in common. Front. Aging Neurosci. 2013, 5, 38.

48

Liu, Y. B.; Xu, L. P.; Dai, W. H.; Dong, H. F.; Wen, Y. Q.; Zhang, X. J. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 2015, 7, 19060-19065.

49

Wu, C. Y.; Wang, C.; Han, T.; Zhou, X. J.; Guo, S. W.; Zhang, J. Y. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv. Healthc. Mater. 2013, 2, 1613-1619.

50

Chong, Y.; Ma, Y. F.; Shen, H.; Tu, X. L.; Zhou, X.; Xu, J. Y.; Dai, J. W.; Fan, S. J.; Zhang, Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014, 35, 5041-5048.

51

Matsusaki, M.; Kanemura, S.; Kinoshita, M.; Lee, Y. H.; Inaba, K.; Okumura, M. The protein disulfide isomerase family: From proteostasis to pathogenesis. Biochim. Biophys. Acta Gen. Subj. in press, DOI: 10.1016/j.bbagen.2019.04.003.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2019
Revised: 15 September 2019
Accepted: 15 September 2019
Published: 26 September 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was conceived by PCK, and was by supported by ARC Project No. CE140100036 (Davis), NSF CAREER CBET-1553945 (Ding), NIH MIRA R35GM119691 (Ding), AFTAM Research Collaboration Award (Davis and Ke), the National Natural Science Foundation of China (No. 11904189) (Sun), and the Juvenile Diabetes Research Foundation (Purcell and Faridi). A.W. P. is supported by a Principal Research Fellowship from the Australian NHMRC. TEM imaging was performed at Bio21 Advanced Microscopy Facility, University of Melbourne. HIM imaging was performed at the MCFP platform, University of Melbourne by Dr. Anders Barlow.

Return