Journal Home > Volume 12 , Issue 2

In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it is extremely difficult to monitor the change of their microstructure and compositions during tissue regeneration. Here, we report how random lasing can be utilized to non-invasively monitor the structure and composition of scaffolds. We hypothesize that morphological and compositional change of silk fibroin (SF) scaffolds can be conveniently detected based on random lasing responses. Engineered SF scaffolds with hydroxyapatite (HAP) nanoparticles and controlled pore alignment were fabricated, and their random lasing responses were analyzed depending on the concentration of HAP nanoparticles and the degree of internal pore alignment. We also examined the real-time random lasing responses of porous SF scaffolds by applying a compressive force to the scaffolds. Introduction of HAP nanoparticles lowered the lasing thresholds and narrowed the random lasing (RL) width dramatically, which is likely due to the increase in heterogeneity in both refractive index and physical arrangement within the SF and HAP composites. The strong dependency of RL response on pore alignment was also measured and validated by numerical calculation with the finite element method (FEM). Finally, real-time monitoring of RL on compressed scaffolds demonstrated the possibility of using RL as a monitoring tool for structural change of SF scaffolds in vivo.


menu
Abstract
Full text
Outline
About this article

Random lasing detection of structural transformation and compositions in silk fibroin scaffolds

Show Author's information SungYeun Yang1,,,, ,§Soocheol Kim1,§HyeIn Shin1Seung Ho Choi2,Young L. Kim2Chulmin Joo1( )WonHyoung Ryu1( )
Department of Mechanical Engineering,Yonsei University,Yonsei-ro 50, Seodaemun-gu, Seoul,03722,Republic of Korea;
Weldon School of Biomedical Engineering,,Purdue University,West Lafayette, Indiana,47907,USA;

Present address: Center of Bio Microsystems, Korea Institute of Science and Technology (KIST), Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea

Present address: School of Electrical Engineering, University of Ulsan, Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea

§ SungYeun Yang and Soocheol Kim contributed equally to this work.

Abstract

In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it is extremely difficult to monitor the change of their microstructure and compositions during tissue regeneration. Here, we report how random lasing can be utilized to non-invasively monitor the structure and composition of scaffolds. We hypothesize that morphological and compositional change of silk fibroin (SF) scaffolds can be conveniently detected based on random lasing responses. Engineered SF scaffolds with hydroxyapatite (HAP) nanoparticles and controlled pore alignment were fabricated, and their random lasing responses were analyzed depending on the concentration of HAP nanoparticles and the degree of internal pore alignment. We also examined the real-time random lasing responses of porous SF scaffolds by applying a compressive force to the scaffolds. Introduction of HAP nanoparticles lowered the lasing thresholds and narrowed the random lasing (RL) width dramatically, which is likely due to the increase in heterogeneity in both refractive index and physical arrangement within the SF and HAP composites. The strong dependency of RL response on pore alignment was also measured and validated by numerical calculation with the finite element method (FEM). Finally, real-time monitoring of RL on compressed scaffolds demonstrated the possibility of using RL as a monitoring tool for structural change of SF scaffolds in vivo.

Keywords: hydroxyapatite, electrospinning, random lasing, silk fibroin, porous scaffolds, aligned pore structure

References(49)

1

Yang, Y. M.; Chen, X. M.; Ding, F.; Zhang, P. Y.; Liu, J.; Gu, X. S. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652.

2

Tao, H.; Kaplan, D. L.; Omenetto, F. G. Silk materials-A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.

3

Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H. L.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.

4

Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.

5

Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.

6

Magoshi, J.; Magoshi, Y.; Nakamura, S. Physical properties and structure of silk. VⅡ. Crystallization of amorphous silk fibroin induced by immersion in methanol. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 185–186.

7

Yang, S. Y.; Hwang, T. H.; Che, L. H.; Oh, J. S.; Ha, Y.; Ryu, W. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed. Mater. 2015, 10, 035011.

8

Karageorgiou, V.; Meinel, L.; Hofmann, S.; Malhotra, A.; Volloch, V.; Kaplan, D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A 2004, 71, 528–537.

9

Yan, L. P.; Oliveira, J. M.; Oliveira, A. L.; Caridade, S. G.; Mano, J. F.; Reis, R. L. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012, 8, 289–301.

10

Li, C. M.; Vepari, C.; Jin, H. J.; Kim, H. J.; Kaplan, D. L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124.

11

Amsden, J. J.; Domachuk, P.; Gopinath, A.; White, R. D.; Negro, L. D.; Kaplan, D. L.; Omenetto, F. G. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 2010, 22, 1746–1749.

12

Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 2011, 23, 1630–1634.

13

Applegate, M. B.; Marelli, B.; Kaplan, D. L.; Omenetto, F. G. Determination of multiphoton absorption of silk fibroin using the Z-scan technique. Opt. Express 2013, 21, 29637–29642.

14

Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415.

15

Toffanin, S.; Kim, S.; Cavallini, S.; Natali, M.; Benfenati, V.; Amsden, J. J.; Kaplan, D. L.; Zamboni, R.; Muccini, M.; Omenetto, F. G. Low-threshold blue lasing from silk fibroin thin films. Appl. Phys. Lett. 2012, 101, 091110.

16

Applegate, M. B.; Perotto, G.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express 2015, 6, 4221–4227.

17

Caixeiro, S.; Gaio, M.; Marelli, B.; Omenetto, F. G.; Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mater. 2016, 4, 998–1003.

18

Lawrence, B. D.; Cronin-Golomb, M.; Georgakoudi, I.; Kaplan, D. L.; Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 2008, 9, 1214–1220.

19

Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Multiple structural coloring of silk–fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 2013, 23, 5373–5380.

20

Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835.

21

Pradhan, P.; Kumar, N. Localization of light in coherently amplifying random media. Phys. Rev. B 1994, 50, 9644–9647.

22

Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438.

23

Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.

24

Noginov, M. A.; Caulfield, H. J.; Noginova, N. E.; Venkateswarlu, P. Line narrowing in the dye solution with scattering centers. Opt. Commun. 1995, 118, 430–437.

25

Sha, W. L.; Liu, C. H.; Liu, F.; Alfano, R. R. Competition between two lasing modes of sulforhodamine 640 in highly scattering media. Opt. Lett. 1996, 21, 1277–1279.

26

Yang, H. Y.; Yu, S. F.; Yan, J.; Zhang, L. D. Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res. Lett. 2010, 5, 809–812.

27

Brito-Silva, A. M.; Galembeck, A.; Gomes, A. S. L.; Jesus-Silva, A. J.; de Araujo, C. B. Random laser action in dye solutions containing Stober silica nanoparticles. J. Appl. Phys. 2010, 108, 033508.

28

Zhu, H.; Shan, C. X.; Zhang, J. Y.; Zhang, Z. Z.; Li, B. H.; Zhao, D. X.; Yao, B.; Shen, D. Z.; Fan, X. W.; Tang, Z. K. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 2010, 22, 1877–1881.

29

Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367.

30

Polson, R. C.; Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291.

31

Song, Q. H.; Xiao, S. M.; Xu, Z. B.; Liu, J. J.; Sun, X. H.; Drachev, V.; Shalaev, V. M.; Akkus, O.; Kim, Y. L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425–1427.

32

Wang, C. S.; Chang, T. Y.; Lin, T. Y.; Chen, Y. F. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4, 6736.

33

Zhang, D. K.; Kostovski, G.; Karnutsch, C.; Mitchell, A. Random lasing from dye doped polymer within biological source scatters: The Pomponia imperatorial cicada wing random nanostructures. Org. Electron. 2012, 13, 2342–2345.

34

Gather, M. C.; Yun, S. H. Single-cell biological lasers. Nat. Photonics 2011, 5, 406–410.

35

Kim, S.; Yang, S.; Choi, S. H.; Kim, Y. L.; Ryu, W.; Joo, C. Random lasing from structurally-modulated silk fibroin nanofibers. Sci. Rep. 2017, 7, 4506.

36

Etemad, S.; Thompson, R.; Andrejco, M. J. Weak localization of photons: Universal fluctuations and ensemble averaging. Phys. Rev. Lett. 1986, 57, 575–578.

37

Kim, Y. L.; Liu, Y.; Turzhitsky, V. M.; Roy, H. K.; Wali, R. K.; Backman, V. Coherent backscattering spectroscopy. Opt. Lett. 2004, 29, 1906–1908.

38

Andreasen, J.; Asatryan, A. A.; Botten, L. C.; Byrne, M. A.; Cao, H.; Ge, L.; Labonté, L.; Sebbah, P.; Stone, A. D.; Türeci, H. E. et al. Modes of random lasers. Adv. Opt. Photonics 2011, 3, 88–127.

39

Kim, H.; Che, L. H.; Ha, Y.; Ryu, W. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2014, 40, 324–335.

40

Van Albada, M. P.; Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 1985, 55, 2692–2695.

41

Wolf, P. E.; Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 1985, 55, 2696–2699.

42

Wiersma, D. S.; Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 1996, 54, 4256–4265.

43

Luan, F.; Gu, B. B.; Gomes, A. S. L.; Yong, K. T.; Wen, S. C.; Prasad, P. N. Lasing in nanocomposite random media. Nano Today 2015, 10, 168–192.

44

Wu, X.; Cao, H. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems. Phys. Rev. A 2008, 77, 013832.

45

Zhang, Q.; Zhao, Y. H.; Yan, S. Q.; Yang, Y. M.; Zhao, H. J.; Li, M. Z.; Lu, S. Z.; Kaplan, D. L. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater. 2012, 8, 2628–2638.

46

Tenopala-Carmona, F.; García-Segundo, C.; Cuando-Espitia, N.; Hernández- Cordero, J. Angular distribution of random laser emission. Opt. Lett. 2014, 39, 655–658.

47

Zhang, R.; Knitter, S.; Liew, S. F.; Omenetto, F. G.; Reinhard, B. M.; Cao, H.; Dal Negro, L. Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers. Appl. Phys. Lett. 2016, 108, 011103.

48

Gaikwad, P.; Bachelard, N.; Sebbah, P.; Backov, R.; Vallée, R. A. L. Competition and coexistence of Raman and random lasing in silica-/titania-based solid foams. Adv. Opt. Mater. 2015, 3, 1640–1651.

49

Cyprych, K.; Sznitko, L.; Mysliwiec, J. Starch: Application of biopolymer in random lasing. Org. Electron. 2014, 15, 2218–2222.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 June 2018
Revised: 21 September 2018
Accepted: 25 September 2018
Published: 23 October 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This research was supported by the research program of the National Research Foundation of Korea (NRF) (NRF-2015R1A5A1037668).

Return