Journal Home > Volume 12 , Issue 1

Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

Show Author's information Yingjie Li1,§Haichuan Zhang1,§Nana Han1Yun Kuang1Junfeng Liu1Wen Liu1( )Haohong Duan3( )Xiaoming Sun1,2( )
Beijing Advanced Innovation Center for Soft Matter Science and Engineering,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing,100029,China;
College of Energy,Beijing University of Chemical Technology,Beijing,100029,China;
Chemistry Research Laboratory, Department of Chemistry,University of Oxford, 12 Mansfield Road,12 Mansfield Road, Oxford, OX1 3TA,UK;

§ Yingjie Li and Haichuan Zhang contributed equally to this work.

Abstract

Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis.

Keywords: fuel cells, oxygen reduction reaction, Janus materials, electrode, gas diffusion

References(38)

1

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B., Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.

2

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

3

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552-556.

4

Yin, P. Q.; Yao, T.; Wu, Y. E; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. , Int. Ed. 2016, 55, 10800-10805.

5

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.

6

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high- performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

7

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226-10231.

8

Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 2016, 8, e308.

9

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.

10

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

11

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

12

Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396-14403.

13

He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494-1497.

14

Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

15

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

16

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.

17

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

18

Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948-7955.

19

Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. , Int. Ed. 2014, 53, 14235-14239.

20

Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel- derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436-4447.

21

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.

22

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.

23

Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293-301.

24

Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861-1872.

25

Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

26

Brandon, N. P.; Brett, D. J. Engineering porous materials for fuel cell applications. Philos. Trans. Roy. Soc. A 2006, 364, 147-159.

27

Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625-7651.

28

Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells—A review. J. Power Sources 2009, 194, 146-160.

29

Park, S.; Lee, J. W.; Popov, B. N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energ. 2012, 37, 5850-5865.

30

Du, H. Y.; Wang, C. H.; Hsu, H. C.; Chang, S. T.; Yen, S. C.; Chen, L. C.; Viswanathan, B.; Chen, K. H. High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem. 2011, 21, 2512-2516.

31

Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155-7161.

32

Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317-6322.

33

Yang, H. C.; Hou, J. W.; Chen, V.; Xu, Z. K. Janus membranes: Exploring duality for advanced separation. Angew. Chem. , Int. Ed. 2016, 55, 13398-13407.

34

Yang, H. C.; Hou, J. W.; Wan, L. S.; Chen, V.; Xu, Z. K. Janus membranes with asymmetric wettability for fine bubble aeration. Adv. Mater. Interfaces 2016, 3, 1500774.

35

Cao, M. Y.; Xiao, J. S.; Yu, C. M.; Li, K.; Jiang, L. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small 2015, 11, 4379-4384.

36

Chen, J. W.; Liu, Y. M.; Guo, D. W.; Cao, M. Y.; Jiang, L. Under-water unidirectional air penetration via a Janus mesh. Chem. Commun. 2015, 51, 11872-11875.

37

Tian, X. L.; Jin, H.; Sainio, J.; Ras, R. H. A.; Ikkala, O. Droplet and fluid gating by biomimetic Janus membranes. Adv. Funct. Mater. 2014, 24, 6023-6028.

38

Zhang, L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531.

Video
12274_2018_2199_MOESM1_ESM.avi
12274_2018_2199_MOESM2_ESM.avi
12274_2018_2199_MOESM3_ESM.avi
12274_2018_2199_MOESM4_ESM.avi
12274_2018_2199_MOESM5_ESM.avi
12274_2018_2199_MOESM6_ESM.avi
12274_2018_2199_MOESM7_ESM.avi
File
12274_2018_2199_MOESM8_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 July 2018
Revised: 26 August 2018
Accepted: 04 September 2018
Published: 15 October 2018
Issue date: January 2019

Copyright

© The Author(s) 2018

Acknowledgements

Acknowledgements

We sincerely appreciate the helpful discussion with Prof. Lei Jiang. This work was financially supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (No. 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University (No. IRT1205), the Fundamental Research Funds for the Central Universities, the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return