AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

Yingjie Li1,§Haichuan Zhang1,§Nana Han1Yun Kuang1Junfeng Liu1Wen Liu1( )Haohong Duan3( )Xiaoming Sun1,2 ( )
Beijing Advanced Innovation Center for Soft Matter Science and Engineering,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing,100029,China;
College of Energy,Beijing University of Chemical Technology,Beijing,100029,China;
Chemistry Research Laboratory, Department of Chemistry,University of Oxford, 12 Mansfield Road,12 Mansfield Road, Oxford, OX1 3TA,UK;

§ Yingjie Li and Haichuan Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis.

Electronic Supplementary Material

Video
12274_2018_2199_MOESM1_ESM.avi
12274_2018_2199_MOESM2_ESM.avi
12274_2018_2199_MOESM3_ESM.avi
12274_2018_2199_MOESM4_ESM.avi
12274_2018_2199_MOESM5_ESM.avi
12274_2018_2199_MOESM6_ESM.avi
12274_2018_2199_MOESM7_ESM.avi
Download File(s)
12274_2018_2199_MOESM8_ESM.pdf (3.4 MB)

References

1

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B., Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.

2

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

3

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552-556.

4

Yin, P. Q.; Yao, T.; Wu, Y. E; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. , Int. Ed. 2016, 55, 10800-10805.

5

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.

6

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high- performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

7

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226-10231.

8

Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 2016, 8, e308.

9

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.

10

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

11

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

12

Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396-14403.

13

He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494-1497.

14

Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

15

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

16

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.

17

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

18

Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948-7955.

19

Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. , Int. Ed. 2014, 53, 14235-14239.

20

Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel- derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436-4447.

21

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.

22

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.

23

Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293-301.

24

Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861-1872.

25

Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

26

Brandon, N. P.; Brett, D. J. Engineering porous materials for fuel cell applications. Philos. Trans. Roy. Soc. A 2006, 364, 147-159.

27

Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625-7651.

28

Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells—A review. J. Power Sources 2009, 194, 146-160.

29

Park, S.; Lee, J. W.; Popov, B. N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energ. 2012, 37, 5850-5865.

30

Du, H. Y.; Wang, C. H.; Hsu, H. C.; Chang, S. T.; Yen, S. C.; Chen, L. C.; Viswanathan, B.; Chen, K. H. High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem. 2011, 21, 2512-2516.

31

Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155-7161.

32

Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317-6322.

33

Yang, H. C.; Hou, J. W.; Chen, V.; Xu, Z. K. Janus membranes: Exploring duality for advanced separation. Angew. Chem. , Int. Ed. 2016, 55, 13398-13407.

34

Yang, H. C.; Hou, J. W.; Wan, L. S.; Chen, V.; Xu, Z. K. Janus membranes with asymmetric wettability for fine bubble aeration. Adv. Mater. Interfaces 2016, 3, 1500774.

35

Cao, M. Y.; Xiao, J. S.; Yu, C. M.; Li, K.; Jiang, L. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small 2015, 11, 4379-4384.

36

Chen, J. W.; Liu, Y. M.; Guo, D. W.; Cao, M. Y.; Jiang, L. Under-water unidirectional air penetration via a Janus mesh. Chem. Commun. 2015, 51, 11872-11875.

37

Tian, X. L.; Jin, H.; Sainio, J.; Ras, R. H. A.; Ikkala, O. Droplet and fluid gating by biomimetic Janus membranes. Adv. Funct. Mater. 2014, 24, 6023-6028.

38

Zhang, L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531.

Nano Research
Pages 177-182
Cite this article:
Li Y, Zhang H, Han N, et al. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Research, 2019, 12(1): 177-182. https://doi.org/10.1007/s12274-018-2199-1
Topics:

1113

Views

62

Downloads

65

Crossref

N/A

Web of Science

62

Scopus

10

CSCD

Altmetrics

Received: 28 July 2018
Revised: 26 August 2018
Accepted: 04 September 2018
Published: 15 October 2018
© The Author(s) 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return