Journal Home > Volume 11 , Issue 6

For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre-Pd@chitin were 0.6 nm in average size, while the reduced catalyst Red-Pd@chitin featured ultra-small particles of 1.3 nm in average size. X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) demonstrated that the Pd catalyst in both oxidative and reductive states retained good dispersity and ultra-small clusters. The catalyst was tested for the hydrogenation of p-nitroanisole, exhibiting an excellent initial rate (13× that of commercial Pd/C)and excellent turnover frequency reaching 52, 000 h-1. Furthermore, the catalyst could be recycled and used more than 10 times with no decay of the catalytic activity, suggesting potential industrial applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts

Show Author's information Xianglin Pei1,§Yi Deng1,§Bo Duan1Ting-Shan Chan2Jyh-Fu Lee2Aiwen Lei1( )Lina Zhang1( )
College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
“National Synchrotron Radiation Research Center”Hsinchu30076Taiwan, China

§Xianglin Pei and Yi Deng contributed equally to this work.

Abstract

For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre-Pd@chitin were 0.6 nm in average size, while the reduced catalyst Red-Pd@chitin featured ultra-small particles of 1.3 nm in average size. X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) demonstrated that the Pd catalyst in both oxidative and reductive states retained good dispersity and ultra-small clusters. The catalyst was tested for the hydrogenation of p-nitroanisole, exhibiting an excellent initial rate (13× that of commercial Pd/C)and excellent turnover frequency reaching 52, 000 h-1. Furthermore, the catalyst could be recycled and used more than 10 times with no decay of the catalytic activity, suggesting potential industrial applications.

Keywords: hydrogenation, Pd clusters, chitin nanowires, supported catalyst

References(39)

1

Clark, J. H. Green chemistry: Challenges and opportunities. Green Chem. 1999, 1, 1-8.

2

Poliakoff, M.; Licence, P. Sustainable technology: Green chemistry. Nature 2007, 450, 810-812.

3

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

4

Yan, H.; Cheng, H.; Yi, H.; Lin Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-10487.

5

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-801.

6

Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.

7

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633-1636.

8

Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477-493.

9

Jones, J.; Xiong, H. F.; DeLariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.

10

Kim, M.; Hwang, S.; Yu, J. S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007, 17, 1656-1659.

11

Mateo, D.; Albero, J.; Garcia, H. Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy Environ. Sci. 2017, 10, 2392-2400.

12

Yang, Z. Y.; Zheng, X. H.; Zheng, J. B. Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem. Eng. J. 2017, 327, 431-440.

13

Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182-1192.

14

Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768-3771.

15

Jang, W. J.; Kim, H. M.; Shim, J. O.; Yoo, S. Y.; Jeon, K. W.; Na, H. S.; Lee, Y. L.; Lee, D. W.; Roh, H. S.; Yoon, W. L. Deactivation of SiO2 supported Ni catalysts by structural change in the direct internal reforming reaction of molten carbonate fuel cell. Catal. Commun. 2017, 101, 44-47.

16

Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A 2016, 4, 12416-12424.

17

Ray, K.; Deo, G. A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts. Appl. Catal. B-Environ. 2017, 218, 525-537.

18

Adibi, P. T. Z.; Pingel, T.; Olsson, E.; Grönbeck, H.; Langhammer, C. Plasmonic nanospectroscopy of platinum catalyst nanoparticle sintering in a mesoporous alumina support. ACS Nano 2016, 10, 5063-5069.

19

Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 2013, 135, 4195-4198.

20

Cui, X. L.; Zuo, W.; Tian, M.; Dong, Z. P.; Ma, J. T. Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols. J. Mol. Catal. A-Chem. 2016, 423, 386-392.

21

Wang, Y. T.; Li, Y.; Liu, S. L.; Li, B. Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohyd. Polym. 2015, 120, 53-59.

22

Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 2010, 22, 519-526.

23

Wu, X. Y.; Shi, Z. Q.; Fu, S. D.; Chen, J. L.; Berry, R. M.; Tam, K. C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929-5935.

24

Keshipour, S.; Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organomet. Chem. 2016, 30, 653-656.

25

Baran, T.; Sargin, I.; Kaya, M.; Menteş, A. Green heterogeneous Pd(Ⅱ) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohyd. Polym. 2016, 152, 181-188.

26

Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem., Int. Ed. 2009, 48, 5916-5920.

27

Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization. J. Am. Chem. Soc. 2015, 137, 6124-6127.

28

Yan, N.; Chen, X. Sustainability: Don't waste seafood waste. Nature 2015, 524, 155-157.

29

Duan, B.; Zheng, X.; Xia, Z. X.; Fan, X. L.; Guo, L.; Liu, J. F.; Wang, Y. F.; Ye, Q. F.; Zhang, L. N. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152-5156.

30

Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. N. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410-1417.

31

Guo, L.; Duan, B.; Zhang, L. N. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 2016, 9, 2149-2161.

32

Duan, B.; Liu, F.; He, M.; Zhang, L. N. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835-2845.

33

Heux, L; Brugnerotto, J; Desbrieres, J; Versali, M. F.; Rinaudo, M. Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromolecules 2000, 1, 746-751.

34

Zhang, G. H.; Yi, H.; Zhang, G. T.; Deng, Y.; Bai, R. P.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Direct observation of reduction of Cu(Ⅱ) to Cu(Ⅰ) by terminal alkynes. J. Am. Chem. Soc. 2014, 136, 924-926.

35

Nelson, R. C.; Miller, J. T. An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal. Sci. Technol. 2012, 2, 461-470.

36

Guo, M.; Dong, H.; Li, J.; Cheng, B.; Huang, Y. Q.; Feng, Y. Q.; Lei, A. W. Spectroscopic observation of iodosylarene metalloporphyrin adducts and manganese(V)-oxo porphyrin species in a cytochrome P450 analogue. Nat. Commun. 2012, 3, 1190.

37

Li, J.; Jin, L. Q.; Liu, C.; Lei, A. W. Quantitative kinetic investigation on transmetalation of ArZnX in a Pd-catalysed oxidative coupling. Chem. Commun. 2013, 49, 9615-9617.

38

Zhang, G. H.; Li, J.; Deng, Y.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Structure-kinetic relationship study of organozinc reagents. Chem. Commun. 2014, 50, 8709-8711.

39

Huang, Z. L.; Jin, L. Q.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. W. Iron-catalyzed oxidative radical cross-coupling/cyclization between phenols and olefins. Angew. Chem., Int. Ed. 2013, 52, 7151-7155.

File
12274_2018_1977_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 October 2017
Revised: 05 December 2017
Accepted: 30 December 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), the Major International (Regional) Joint Research Project of National Natural Science Foundation of China (No. 21620102004), and the National Natural Science Foundation of China (Nos. 21390402, 201703159 and 21520102003). Special thanks to Prof. Nanfeng Zheng in Xiamen University and Prof. Hexiang Deng in Wuhan University for their discussing.

Return