Journal Home > Volume 11 , Issue 5

In this study, we demonstrate the performance of silicon nanowire (SiNW)n-metal oxide semiconductor (MOS) and p-MOS ratioed inverters that are fabricated on bendable substrates. The electrical characteristics of the fabricateddevices can be controlled by adjusting the load voltage. The logic swings of then- and p-MOS ratioed inverters at a low supply voltage of 1 V are 80% and 96%, respectively. The output voltage level of the p-MOS ratioed inverter is close to rail-to-rail operation. The device also exhibits stable characteristics with goodfatigue properties. Our bendable SiNW ratioed inverters show promise asa candidate building block for future bendable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silicon nanowire ratioed inverters on bendable substrates

Show Author's information Jeongje Moon1,2Yoonjoong Kim1Doohyeok Lim1Kyeungmin Im1Sangsig Kim1( )
Department of Electrical EngineeringKorea University, 145 Anam-ro, Seongbuk-guSeoul02841Republic of Korea
LED PKG Development GroupSamsung Electronics Co., Ltd., 1 Samsung-ro, Yongin-siGyeonggi-do17113Republic of Korea

Abstract

In this study, we demonstrate the performance of silicon nanowire (SiNW)n-metal oxide semiconductor (MOS) and p-MOS ratioed inverters that are fabricated on bendable substrates. The electrical characteristics of the fabricateddevices can be controlled by adjusting the load voltage. The logic swings of then- and p-MOS ratioed inverters at a low supply voltage of 1 V are 80% and 96%, respectively. The output voltage level of the p-MOS ratioed inverter is close to rail-to-rail operation. The device also exhibits stable characteristics with goodfatigue properties. Our bendable SiNW ratioed inverters show promise asa candidate building block for future bendable electronics.

Keywords: silicon nanowire, bendable substrate, ratioed inverter, n-MOS inverter, p-MOS inverter

References(20)

1

Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. -S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259-288.

2

Taur, Y. CMOS design near the limit of scaling. IBM J. Res. Dev. 2002, 46, 213-222.

3

Horowitz, M, ; Alon, E.; Patil, D.; Naffziger, S.; Kumar, R.; Bernstein, K. Scaling, power, and the future of CMOS. In IEEE International Electron Devices Meeting, IEDM 2005, Washington, DC, USA, 2005, pp 7-15.

4

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.

5

Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices. 2008, 55, 2859-2876.

6

Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973-977.

7

Singh, N.; Agarwal, A.; Bera, L. K.; Liow, T. Y.; Yang, R.; Rustagi, S. C.; Tung, C. H.; Kumar, R.; Lo, G. Q.; Balasubramanian, N. et al. High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 2006, 27, 383-386.

8

Sheriff, D. A.; Wang, D. W.; Heath, J. R.; Kurtin, J. N. Complementary symmetry nanowire logic circuits: Experimental demonstrations and in silico optimizations. ACS Nano 2008, 2, 1789-1798.

9

Lee, M.; Jeon, Y.; Moon, T.; Kim, S. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS inverters on plastic. ACS Nano 2011, 5, 2629-2636.

10

Weste, N.; Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective; 4th Ed. Addison-Wesley: Boston, 2010.

11

Kartschoke, P.; Rohrer, N. Techniques for reduced power and increased speed in dynamic and ratio logic circuits. In Proceedings of the 39th Midwest Symposium on Circuits and Systems, Ames, IA, USA, 1996, pp 175-178.

12

Verma, A.; Mehra, R. Design and analysis of conventional and ratioed CMOS logic circuit. IOSR-JVSP 2013, 2, 25-29.

13

An, Y. J.; Jung, D. H.; Ryu, K.; Yim, H. S.; Jung, S. O. All-digital on-chip process sensor using ratioed inverter-based ring oscillator. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2016, 24, 3232-3242.

14

Lee, M.; Koo, J.; Chung, E. -A.; Jeong, D. -Y.; Lee, Y. -S.; Kim, S. Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates. Nanotechnology 2009, 20, 455201.

15

Lee, M.; Jeon, Y.; Kim, M.; Kim, S. Flexible semi-around gate silicon nanowire tunnel transistors with a sub-kT/q switch. J. Appl. Phys. 2015, 117, 224502.

16

Lee, M.; Jeon, Y.; Kim, S. Analysis of electrical parameters of p-channel silicon nanowire transistors with selectively thinned channels on plastics. Appl. Phys. Lett. 2012, 101, 093503.

17

Suo, Z.; Ma, E. Y.; Gleskova, H.; Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 1999, 74, 1177-1179.

18

Liu, X. L.; Lee, C.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329-3331.

19

Karmakar, S.; Chandy, J. A.; Gogna, M.; Jain, F. C. Fabrication and circuit modeling of NMOS inverter based on quantum dot gate field-effect transistors. J. Electron. Mater. 2012, 41, 2184-2192.

20

Lee, Y. T.; Raza, S. R. A.; Jeon, P. J.; Ha, R.; Choi, H. -J.; Im, S. Long single ZnO nanowire for logic and memory circuits: NOT, NAND, NOR gate, and SRAM. Nanoscale 2013, 5, 4181-4185.

File
12274_2017_1884_MOESM1_ESM.pdf (354.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2017
Revised: 13 September 2017
Accepted: 09 October 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was partly supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (Nos. NRF-2013R1-A2A1A03070750 and NRF-2015R1A2A1A15055437), by the Brain Korea 21 Plus Project in 2017, and Samsung Electronics.

Return